Loading…
Retaining Geochemical Signatures during Aragonite-Calcite Transformation at Hydrothermal Conditions
Transformation of aragonite, a mineral phase metastable at Earth’s surface, to calcite widely occurs in both sedimentary and metamorphic systems with the presence of an aqueous phase. The transformation process can affect geochemical signatures of aragonite (a protolith). This study focused on quant...
Saved in:
Published in: | Minerals (Basel) 2021-10, Vol.11 (10), p.1052 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transformation of aragonite, a mineral phase metastable at Earth’s surface, to calcite widely occurs in both sedimentary and metamorphic systems with the presence of an aqueous phase. The transformation process can affect geochemical signatures of aragonite (a protolith). This study focused on quantification of the retention of Mg/Ca and Sr/Ca ratios, and δ18O during the transformation process as well as evaluation of the transformation rate. To investigate the effect of transformation from aragonite to calcite on elemental and stable isotope ratios, we conducted a series of experiments in NaCl solutions at temperatures between 120 and 184 °C. Two additional experiments at 250 °C were conducted to estimate the transformation rate of aragonite to calcite. Protolith materials consist of (1) synthetic (Mg; Sr-bearing or non-Mg; Sr bearing) needle-shaped microcrystals of aragonite (100 µm in size) of natural aragonite. X-ray diffraction (XRD) showed that microcrystals successfully transformed to calcite within 30 h and scanning electron microscopy (SEM) yielded a change in the crystal size to >10 µm in rhombohedral shape. Electron backscatter diffraction (EBSD) of the larger aragonite chips showed that transformation to randomly oriented calcite occurred at the rims and along the cracks while the core retained an aragonite crystal structure. Isotope-ratio mass spectrometry (IRMS) analyses showed that calcite δ18O was controlled by temperature and δ18O of the solution. The obtained calibration curve of isotope fractionation factor versus temperature is consistent with other studies. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses showed that calcite partially or completely retained Mg/Ca and Sr/Ca ratios through the transformation. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min11101052 |