Loading…

Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example

A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphos...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-08, Vol.23 (17), p.7453
Main Authors: Chen, Hsiu-Mei, Wang, Wen-Chang, Chen, Hong-Ren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3
cites cdi_FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3
container_end_page
container_issue 17
container_start_page 7453
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Chen, Hsiu-Mei
Wang, Wen-Chang
Chen, Hong-Ren
description A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM–0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.
doi_str_mv 10.3390/s23177453
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b5fbe9b215f4b379152f95a8b963d1e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764465545</galeid><doaj_id>oai_doaj_org_article_5b5fbe9b215f4b379152f95a8b963d1e</doaj_id><sourcerecordid>A764465545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3</originalsourceid><addsrcrecordid>eNptks9u1DAQxiMEoqVw4A0scYHDFv9NHC5oaQtUKlCp27M1cSa7Xpx4ayeIPgDvjbdbFRYhH2yNv-83M_YUxUtGj4Wo6dvEBasqqcSj4pBJLmeac_r4r_NB8SylNaVcCKGfFgeiKnVV0_qw-HXVg_ezL8GjnTyS-QD-NrlEPkDCloSBnH6dk6sxwtCSU5c2Hiz2OIzkOrlhSSAL7YjRhbgKbdjkILlchTFgBo7RWbLI1tROFuM7soDvW9N8cUkgERjI2U_oNx6fF0868Alf3O9HxfXHs8XJ59nFt0_nJ_OLmVVMjjPZtrXiWiJVSlTUgmVUS142KICphmlaKU21hiyTGhintrSW27KzJWttI46K8x23DbA2m-h6iLcmgDN3gRCXBuLorEejGtU1WDecqU42oqqZ4l2tQDd1KVqGmfV-x9pMTY-tzW8Swe9B928GtzLL8MMwKmtacZUJr-8JMdxMmEbTu2TRexgwTMlwXQpBBec8S1_9I12HKea_ulPxSuQyxR_VEnIHbuhCTmy3UDOvSilLpeQ27fF_VHm12DsbBuxcju8Z3uwMNoaUInYPTTJqtgNoHgZQ_AZJe8nv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862732153</pqid></control><display><type>article</type><title>Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Chen, Hsiu-Mei ; Wang, Wen-Chang ; Chen, Hong-Ren</creator><creatorcontrib>Chen, Hsiu-Mei ; Wang, Wen-Chang ; Chen, Hong-Ren</creatorcontrib><description>A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM–0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23177453</identifier><identifier>PMID: 37687909</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Adenosine triphosphate ; Analysis ; Antibodies ; ATP ; Bacteriorhodopsin ; Biosensors ; Detectors ; DNA ; Electrodes ; Electrolytes ; Graphene ; Hemoglobin ; Immunoassay ; Microorganisms ; photoelectric biosensor ; Proteins ; purple membrane ; Quantum dots ; Reynolds number ; Rhodopsin ; Sensors ; small molecule ; strand displacement</subject><ispartof>Sensors (Basel, Switzerland), 2023-08, Vol.23 (17), p.7453</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3</citedby><cites>FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862732153/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862732153?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Chen, Hsiu-Mei</creatorcontrib><creatorcontrib>Wang, Wen-Chang</creatorcontrib><creatorcontrib>Chen, Hong-Ren</creatorcontrib><title>Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example</title><title>Sensors (Basel, Switzerland)</title><description>A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM–0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.</description><subject>Acids</subject><subject>Adenosine triphosphate</subject><subject>Analysis</subject><subject>Antibodies</subject><subject>ATP</subject><subject>Bacteriorhodopsin</subject><subject>Biosensors</subject><subject>Detectors</subject><subject>DNA</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Hemoglobin</subject><subject>Immunoassay</subject><subject>Microorganisms</subject><subject>photoelectric biosensor</subject><subject>Proteins</subject><subject>purple membrane</subject><subject>Quantum dots</subject><subject>Reynolds number</subject><subject>Rhodopsin</subject><subject>Sensors</subject><subject>small molecule</subject><subject>strand displacement</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9u1DAQxiMEoqVw4A0scYHDFv9NHC5oaQtUKlCp27M1cSa7Xpx4ayeIPgDvjbdbFRYhH2yNv-83M_YUxUtGj4Wo6dvEBasqqcSj4pBJLmeac_r4r_NB8SylNaVcCKGfFgeiKnVV0_qw-HXVg_ezL8GjnTyS-QD-NrlEPkDCloSBnH6dk6sxwtCSU5c2Hiz2OIzkOrlhSSAL7YjRhbgKbdjkILlchTFgBo7RWbLI1tROFuM7soDvW9N8cUkgERjI2U_oNx6fF0868Alf3O9HxfXHs8XJ59nFt0_nJ_OLmVVMjjPZtrXiWiJVSlTUgmVUS142KICphmlaKU21hiyTGhintrSW27KzJWttI46K8x23DbA2m-h6iLcmgDN3gRCXBuLorEejGtU1WDecqU42oqqZ4l2tQDd1KVqGmfV-x9pMTY-tzW8Swe9B928GtzLL8MMwKmtacZUJr-8JMdxMmEbTu2TRexgwTMlwXQpBBec8S1_9I12HKea_ulPxSuQyxR_VEnIHbuhCTmy3UDOvSilLpeQ27fF_VHm12DsbBuxcju8Z3uwMNoaUInYPTTJqtgNoHgZQ_AZJe8nv</recordid><startdate>20230827</startdate><enddate>20230827</enddate><creator>Chen, Hsiu-Mei</creator><creator>Wang, Wen-Chang</creator><creator>Chen, Hong-Ren</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230827</creationdate><title>Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example</title><author>Chen, Hsiu-Mei ; Wang, Wen-Chang ; Chen, Hong-Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Adenosine triphosphate</topic><topic>Analysis</topic><topic>Antibodies</topic><topic>ATP</topic><topic>Bacteriorhodopsin</topic><topic>Biosensors</topic><topic>Detectors</topic><topic>DNA</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Hemoglobin</topic><topic>Immunoassay</topic><topic>Microorganisms</topic><topic>photoelectric biosensor</topic><topic>Proteins</topic><topic>purple membrane</topic><topic>Quantum dots</topic><topic>Reynolds number</topic><topic>Rhodopsin</topic><topic>Sensors</topic><topic>small molecule</topic><topic>strand displacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hsiu-Mei</creatorcontrib><creatorcontrib>Wang, Wen-Chang</creatorcontrib><creatorcontrib>Chen, Hong-Ren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hsiu-Mei</au><au>Wang, Wen-Chang</au><au>Chen, Hong-Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-08-27</date><risdate>2023</risdate><volume>23</volume><issue>17</issue><spage>7453</spage><pages>7453-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM–0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37687909</pmid><doi>10.3390/s23177453</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-08, Vol.23 (17), p.7453
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b5fbe9b215f4b379152f95a8b963d1e
source Publicly Available Content (ProQuest); PubMed Central
subjects Acids
Adenosine triphosphate
Analysis
Antibodies
ATP
Bacteriorhodopsin
Biosensors
Detectors
DNA
Electrodes
Electrolytes
Graphene
Hemoglobin
Immunoassay
Microorganisms
photoelectric biosensor
Proteins
purple membrane
Quantum dots
Reynolds number
Rhodopsin
Sensors
small molecule
strand displacement
title Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Molecule%20Analysis%20Based%20on%20DNA%20Strand%20Displacement%20Using%20a%20Bacteriorhodopsin%20Photoelectric%20Transducer:%20Taking%20ATP%20as%20an%20Example&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Chen,%20Hsiu-Mei&rft.date=2023-08-27&rft.volume=23&rft.issue=17&rft.spage=7453&rft.pages=7453-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23177453&rft_dat=%3Cgale_doaj_%3EA764465545%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-4dd95284e055370cac108426be3a15b180758088ad9548a120c6cc2c6fc61dcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862732153&rft_id=info:pmid/37687909&rft_galeid=A764465545&rfr_iscdi=true