Loading…

Significant artefactual noise in 90Y TOF-PET imaging of low specific activity phantoms arises despite increased acquisition time

Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90 Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. However, due...

Full description

Saved in:
Bibliographic Details
Published in:EJNMMI physics 2019-11, Vol.6 (1), p.1-4, Article 20
Main Authors: Hesse, Michel, Walrand, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90 Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. However, due to the constant random coincidence rate induced by the natural crystal radioactivity, reduction of 90 Y specific activity in TOF-PET imaging cannot be counterbalanced by increasing the acquisition time. As a result, most 90 Y phantom studies reported images noisier than those obtained in whole-body 18 F-FDG, and thus advised to use dedicated noise control in TOF-PET imaging post 90 Y liver radioembolization. We performed acquisitions of the Jaszczak Deluxe phantom in which the hot rod insert was only partially filled with 2.6 GBq of 90 Y. Standard reconstruction parameters recommended by the manufacturer for whole-body 18 F-FDG PET were used. Low specific activity setups, although exactly compensated by increasing the acquisition time in order to get the same number of detected true coincidences per millilitre, were impacted by significant noise. On the other hand, specific activity and acquisition time setup similar to that used in post 90 Y liver radioembolization provided image quality very close to that of whole-body 18 F-FDG. This result clearly discards the use of low specific activity phantoms intended to TOF-PET reconstruction parameter optimization. Volume reduction of large phantoms can be achieved by vertically setting the phantoms or by adding Styrofoam inserts.
ISSN:2197-7364
2197-7364
DOI:10.1186/s40658-019-0259-6