Loading…

Remote control of excitonic materials using coupled optical cavities

Strong coupling with light has emerged as a powerful tool for modifying the properties of optical materials. Typical systems are based on a fluorescent layer embedded in a single optical cavity, whereby the excitonic emission is converted into a polarized, energy-tunable and dispersive polariton emi...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Web of conferences 2024, Vol.309, p.6019
Main Authors: Pirruccio, Giuseppe, García Jomaso, Yesenia, Vargas, Brenda, Ley Domínguez, David, Armenta Rico, Román, Sauceda, Huziel, Ordóñez Romero, César, Lara García, Hugo, Camacho Guardian, Arturo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1579-5f0dba60efcc0e9d449058edb3abe848bf53c65831d921bb8be6704eb17b91e13
container_end_page
container_issue
container_start_page 6019
container_title EPJ Web of conferences
container_volume 309
creator Pirruccio, Giuseppe
García Jomaso, Yesenia
Vargas, Brenda
Ley Domínguez, David
Armenta Rico, Román
Sauceda, Huziel
Ordóñez Romero, César
Lara García, Hugo
Camacho Guardian, Arturo
description Strong coupling with light has emerged as a powerful tool for modifying the properties of optical materials. Typical systems are based on a fluorescent layer embedded in a single optical cavity, whereby the excitonic emission is converted into a polarized, energy-tunable and dispersive polariton emission. There, excitons and photons coexist in the same volume and therefore any change in the emission properties of the excitonic material comes at the expense of simultaneously modifying the photonic environment where excitons reside, i.e., layer thickness and refractive index. Here, we demonstrate remote control over the intensity and total decay rate of the fluorescent layer by adding an extra purely photonic cavity strongly coupled to the first one. By modifying the resonant condition of the extra cavity, we reduce the total decay rate and suppress the fluorescence intensity of the fluorescent layer without explicitly affecting the first cavity. Such modification of the optical properties of the layer is the consequence of a resonant configuration that spatially segregates photons and excitons into different cavities.
doi_str_mv 10.1051/epjconf/202430906019
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b67f004ee744742ab552721e657cd9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b67f004ee744742ab552721e657cd9a</doaj_id><sourcerecordid>oai_doaj_org_article_5b67f004ee744742ab552721e657cd9a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1579-5f0dba60efcc0e9d449058edb3abe848bf53c65831d921bb8be6704eb17b91e13</originalsourceid><addsrcrecordid>eNpNkN1KAzEQRoMoWGrfwIu8wNrJJtlsLqX-FQqCKHgXkuykpGybJbsVfXvXtkjnZobhm8NwCLllcMdAsjl2G592YV5CKThoqIDpCzIpGUABTHxens3XZNb3GxiLa81lNSEPb7hNA9IRMeTU0hQofvs4pF30dGsHzNG2Pd33cbceQ_uuxYambojettTbrzhE7G_IVRhTODv1Kfl4enxfvBSr1-fl4n5VeCaVLmSAxtkKMHgPqBshNMgaG8etw1rULkjuK1lz1uiSOVc7rBQIdEw5zZDxKVkeuU2yG9PluLX5xyQbzWGR8trYPL7WopGuUgHGY1RCKFFaJ2WpSoaVVL7RdmSJI8vn1PcZwz-PgfkTa05izblY_gscDm4W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote control of excitonic materials using coupled optical cavities</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Pirruccio, Giuseppe ; García Jomaso, Yesenia ; Vargas, Brenda ; Ley Domínguez, David ; Armenta Rico, Román ; Sauceda, Huziel ; Ordóñez Romero, César ; Lara García, Hugo ; Camacho Guardian, Arturo</creator><contributor>Descrovi, E. ; De Stefano, L. ; Velotta, R.</contributor><creatorcontrib>Pirruccio, Giuseppe ; García Jomaso, Yesenia ; Vargas, Brenda ; Ley Domínguez, David ; Armenta Rico, Román ; Sauceda, Huziel ; Ordóñez Romero, César ; Lara García, Hugo ; Camacho Guardian, Arturo ; Descrovi, E. ; De Stefano, L. ; Velotta, R.</creatorcontrib><description>Strong coupling with light has emerged as a powerful tool for modifying the properties of optical materials. Typical systems are based on a fluorescent layer embedded in a single optical cavity, whereby the excitonic emission is converted into a polarized, energy-tunable and dispersive polariton emission. There, excitons and photons coexist in the same volume and therefore any change in the emission properties of the excitonic material comes at the expense of simultaneously modifying the photonic environment where excitons reside, i.e., layer thickness and refractive index. Here, we demonstrate remote control over the intensity and total decay rate of the fluorescent layer by adding an extra purely photonic cavity strongly coupled to the first one. By modifying the resonant condition of the extra cavity, we reduce the total decay rate and suppress the fluorescence intensity of the fluorescent layer without explicitly affecting the first cavity. Such modification of the optical properties of the layer is the consequence of a resonant configuration that spatially segregates photons and excitons into different cavities.</description><identifier>ISSN: 2100-014X</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/202430906019</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>EPJ Web of conferences, 2024, Vol.309, p.6019</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1579-5f0dba60efcc0e9d449058edb3abe848bf53c65831d921bb8be6704eb17b91e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Descrovi, E.</contributor><contributor>De Stefano, L.</contributor><contributor>Velotta, R.</contributor><creatorcontrib>Pirruccio, Giuseppe</creatorcontrib><creatorcontrib>García Jomaso, Yesenia</creatorcontrib><creatorcontrib>Vargas, Brenda</creatorcontrib><creatorcontrib>Ley Domínguez, David</creatorcontrib><creatorcontrib>Armenta Rico, Román</creatorcontrib><creatorcontrib>Sauceda, Huziel</creatorcontrib><creatorcontrib>Ordóñez Romero, César</creatorcontrib><creatorcontrib>Lara García, Hugo</creatorcontrib><creatorcontrib>Camacho Guardian, Arturo</creatorcontrib><title>Remote control of excitonic materials using coupled optical cavities</title><title>EPJ Web of conferences</title><description>Strong coupling with light has emerged as a powerful tool for modifying the properties of optical materials. Typical systems are based on a fluorescent layer embedded in a single optical cavity, whereby the excitonic emission is converted into a polarized, energy-tunable and dispersive polariton emission. There, excitons and photons coexist in the same volume and therefore any change in the emission properties of the excitonic material comes at the expense of simultaneously modifying the photonic environment where excitons reside, i.e., layer thickness and refractive index. Here, we demonstrate remote control over the intensity and total decay rate of the fluorescent layer by adding an extra purely photonic cavity strongly coupled to the first one. By modifying the resonant condition of the extra cavity, we reduce the total decay rate and suppress the fluorescence intensity of the fluorescent layer without explicitly affecting the first cavity. Such modification of the optical properties of the layer is the consequence of a resonant configuration that spatially segregates photons and excitons into different cavities.</description><issn>2100-014X</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkN1KAzEQRoMoWGrfwIu8wNrJJtlsLqX-FQqCKHgXkuykpGybJbsVfXvXtkjnZobhm8NwCLllcMdAsjl2G592YV5CKThoqIDpCzIpGUABTHxens3XZNb3GxiLa81lNSEPb7hNA9IRMeTU0hQofvs4pF30dGsHzNG2Pd33cbceQ_uuxYambojettTbrzhE7G_IVRhTODv1Kfl4enxfvBSr1-fl4n5VeCaVLmSAxtkKMHgPqBshNMgaG8etw1rULkjuK1lz1uiSOVc7rBQIdEw5zZDxKVkeuU2yG9PluLX5xyQbzWGR8trYPL7WopGuUgHGY1RCKFFaJ2WpSoaVVL7RdmSJI8vn1PcZwz-PgfkTa05izblY_gscDm4W</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pirruccio, Giuseppe</creator><creator>García Jomaso, Yesenia</creator><creator>Vargas, Brenda</creator><creator>Ley Domínguez, David</creator><creator>Armenta Rico, Román</creator><creator>Sauceda, Huziel</creator><creator>Ordóñez Romero, César</creator><creator>Lara García, Hugo</creator><creator>Camacho Guardian, Arturo</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Remote control of excitonic materials using coupled optical cavities</title><author>Pirruccio, Giuseppe ; García Jomaso, Yesenia ; Vargas, Brenda ; Ley Domínguez, David ; Armenta Rico, Román ; Sauceda, Huziel ; Ordóñez Romero, César ; Lara García, Hugo ; Camacho Guardian, Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1579-5f0dba60efcc0e9d449058edb3abe848bf53c65831d921bb8be6704eb17b91e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirruccio, Giuseppe</creatorcontrib><creatorcontrib>García Jomaso, Yesenia</creatorcontrib><creatorcontrib>Vargas, Brenda</creatorcontrib><creatorcontrib>Ley Domínguez, David</creatorcontrib><creatorcontrib>Armenta Rico, Román</creatorcontrib><creatorcontrib>Sauceda, Huziel</creatorcontrib><creatorcontrib>Ordóñez Romero, César</creatorcontrib><creatorcontrib>Lara García, Hugo</creatorcontrib><creatorcontrib>Camacho Guardian, Arturo</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EPJ Web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirruccio, Giuseppe</au><au>García Jomaso, Yesenia</au><au>Vargas, Brenda</au><au>Ley Domínguez, David</au><au>Armenta Rico, Román</au><au>Sauceda, Huziel</au><au>Ordóñez Romero, César</au><au>Lara García, Hugo</au><au>Camacho Guardian, Arturo</au><au>Descrovi, E.</au><au>De Stefano, L.</au><au>Velotta, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote control of excitonic materials using coupled optical cavities</atitle><jtitle>EPJ Web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>309</volume><spage>6019</spage><pages>6019-</pages><issn>2100-014X</issn><eissn>2100-014X</eissn><abstract>Strong coupling with light has emerged as a powerful tool for modifying the properties of optical materials. Typical systems are based on a fluorescent layer embedded in a single optical cavity, whereby the excitonic emission is converted into a polarized, energy-tunable and dispersive polariton emission. There, excitons and photons coexist in the same volume and therefore any change in the emission properties of the excitonic material comes at the expense of simultaneously modifying the photonic environment where excitons reside, i.e., layer thickness and refractive index. Here, we demonstrate remote control over the intensity and total decay rate of the fluorescent layer by adding an extra purely photonic cavity strongly coupled to the first one. By modifying the resonant condition of the extra cavity, we reduce the total decay rate and suppress the fluorescence intensity of the fluorescent layer without explicitly affecting the first cavity. Such modification of the optical properties of the layer is the consequence of a resonant configuration that spatially segregates photons and excitons into different cavities.</abstract><pub>EDP Sciences</pub><doi>10.1051/epjconf/202430906019</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2100-014X
ispartof EPJ Web of conferences, 2024, Vol.309, p.6019
issn 2100-014X
2100-014X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b67f004ee744742ab552721e657cd9a
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
title Remote control of excitonic materials using coupled optical cavities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20control%20of%20excitonic%20materials%20using%20coupled%20optical%20cavities&rft.jtitle=EPJ%20Web%20of%20conferences&rft.au=Pirruccio,%20Giuseppe&rft.date=2024&rft.volume=309&rft.spage=6019&rft.pages=6019-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/202430906019&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_5b67f004ee744742ab552721e657cd9a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1579-5f0dba60efcc0e9d449058edb3abe848bf53c65831d921bb8be6704eb17b91e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true