Loading…

Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3

To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources a...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-03, Vol.14 (6), p.2438
Main Authors: Wen, Weixiang, Bai, Yang, Xu, Mengxu, Gao, Yujuan, Yan, Pingke, Xu, Huabing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373
container_end_page
container_issue 6
container_start_page 2438
container_title Applied sciences
container_volume 14
creator Wen, Weixiang
Bai, Yang
Xu, Mengxu
Gao, Yujuan
Yan, Pingke
Xu, Huabing
description To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.
doi_str_mv 10.3390/app14062438
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e</doaj_id><sourcerecordid>2988695353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</originalsourceid><addsrcrecordid>eNpNkclqwzAQhk1poSHNqS9g6LG41WYtxxC6BBICTXoWspbEwbVcyTnksfoifaYqCyVzmeHnn0-amSy7h-AJYwGeVddBAigimF9lAwQYLTCB7Pqivs1GMW5BCgExh2CQxbnVG9XWsa91vux3Zp97l_cbm09b1-xsq-1B-LBK96rt89W-s7lqTT42pu5r3-ZL-322tce-ea2Dj9p3CTj3odv4xq-P1N-fYtygBb7Lbpxqoh2d8zD7fH1ZTd6L2eJtOhnPCo0R6gtKK20YsMBRCgmuqHEOiMpBUx0U5CyxJeBMYFAajgWvtNOlIYJrAzhmeJhNT1zj1VZ2of5SYS-9quVR8GEtVUhzN1aWFYPQcYEqrYklXCFSaUCYRqxMe7KJ9XBidcGneWMvt34X2vR9iQTnVJS4xMn1eHIdVhCDdf-vQiAPR5IXR8J_n8WEUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2988695353</pqid></control><display><type>article</type><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><source>Publicly Available Content Database</source><creator>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</creator><creatorcontrib>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</creatorcontrib><description>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14062438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>addition sequence ; Aerospace materials ; Alumina ; Aluminum ; ammonium aluminum carbonate hydroxide ; Atoms &amp; subatomic particles ; Boehmite ; Chemical vapor deposition ; Chloride ; Composite materials ; Crystal structure ; Crystallization ; Methods ; microscopic morphology ; Microstructure ; Morphology ; Nitrates ; Phase transitions ; Pore size ; Potassium ; Raw materials ; reactant types ; Zeolites ; α-Al2O3</subject><ispartof>Applied sciences, 2024-03, Vol.14 (6), p.2438</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2988695353/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2988695353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wen, Weixiang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Xu, Mengxu</creatorcontrib><creatorcontrib>Gao, Yujuan</creatorcontrib><creatorcontrib>Yan, Pingke</creatorcontrib><creatorcontrib>Xu, Huabing</creatorcontrib><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><title>Applied sciences</title><description>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</description><subject>addition sequence</subject><subject>Aerospace materials</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>ammonium aluminum carbonate hydroxide</subject><subject>Atoms &amp; subatomic particles</subject><subject>Boehmite</subject><subject>Chemical vapor deposition</subject><subject>Chloride</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Methods</subject><subject>microscopic morphology</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Phase transitions</subject><subject>Pore size</subject><subject>Potassium</subject><subject>Raw materials</subject><subject>reactant types</subject><subject>Zeolites</subject><subject>α-Al2O3</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclqwzAQhk1poSHNqS9g6LG41WYtxxC6BBICTXoWspbEwbVcyTnksfoifaYqCyVzmeHnn0-amSy7h-AJYwGeVddBAigimF9lAwQYLTCB7Pqivs1GMW5BCgExh2CQxbnVG9XWsa91vux3Zp97l_cbm09b1-xsq-1B-LBK96rt89W-s7lqTT42pu5r3-ZL-322tce-ea2Dj9p3CTj3odv4xq-P1N-fYtygBb7Lbpxqoh2d8zD7fH1ZTd6L2eJtOhnPCo0R6gtKK20YsMBRCgmuqHEOiMpBUx0U5CyxJeBMYFAajgWvtNOlIYJrAzhmeJhNT1zj1VZ2of5SYS-9quVR8GEtVUhzN1aWFYPQcYEqrYklXCFSaUCYRqxMe7KJ9XBidcGneWMvt34X2vR9iQTnVJS4xMn1eHIdVhCDdf-vQiAPR5IXR8J_n8WEUQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wen, Weixiang</creator><creator>Bai, Yang</creator><creator>Xu, Mengxu</creator><creator>Gao, Yujuan</creator><creator>Yan, Pingke</creator><creator>Xu, Huabing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20240301</creationdate><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><author>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>addition sequence</topic><topic>Aerospace materials</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>ammonium aluminum carbonate hydroxide</topic><topic>Atoms &amp; subatomic particles</topic><topic>Boehmite</topic><topic>Chemical vapor deposition</topic><topic>Chloride</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Methods</topic><topic>microscopic morphology</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Phase transitions</topic><topic>Pore size</topic><topic>Potassium</topic><topic>Raw materials</topic><topic>reactant types</topic><topic>Zeolites</topic><topic>α-Al2O3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Weixiang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Xu, Mengxu</creatorcontrib><creatorcontrib>Gao, Yujuan</creatorcontrib><creatorcontrib>Yan, Pingke</creatorcontrib><creatorcontrib>Xu, Huabing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Weixiang</au><au>Bai, Yang</au><au>Xu, Mengxu</au><au>Gao, Yujuan</au><au>Yan, Pingke</au><au>Xu, Huabing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</atitle><jtitle>Applied sciences</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>2438</spage><pages>2438-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14062438</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-03, Vol.14 (6), p.2438
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e
source Publicly Available Content Database
subjects addition sequence
Aerospace materials
Alumina
Aluminum
ammonium aluminum carbonate hydroxide
Atoms & subatomic particles
Boehmite
Chemical vapor deposition
Chloride
Composite materials
Crystal structure
Crystallization
Methods
microscopic morphology
Microstructure
Morphology
Nitrates
Phase transitions
Pore size
Potassium
Raw materials
reactant types
Zeolites
α-Al2O3
title Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20the%20Influence%20of%20Reactant%20Type%20and%20Addition%20Sequence%20on%20the%20Microscopic%20Morphology%20of%20%CE%B1-Al2O3&rft.jtitle=Applied%20sciences&rft.au=Wen,%20Weixiang&rft.date=2024-03-01&rft.volume=14&rft.issue=6&rft.spage=2438&rft.pages=2438-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14062438&rft_dat=%3Cproquest_doaj_%3E2988695353%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2988695353&rft_id=info:pmid/&rfr_iscdi=true