Loading…
Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3
To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources a...
Saved in:
Published in: | Applied sciences 2024-03, Vol.14 (6), p.2438 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373 |
container_end_page | |
container_issue | 6 |
container_start_page | 2438 |
container_title | Applied sciences |
container_volume | 14 |
creator | Wen, Weixiang Bai, Yang Xu, Mengxu Gao, Yujuan Yan, Pingke Xu, Huabing |
description | To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies. |
doi_str_mv | 10.3390/app14062438 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e</doaj_id><sourcerecordid>2988695353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</originalsourceid><addsrcrecordid>eNpNkclqwzAQhk1poSHNqS9g6LG41WYtxxC6BBICTXoWspbEwbVcyTnksfoifaYqCyVzmeHnn0-amSy7h-AJYwGeVddBAigimF9lAwQYLTCB7Pqivs1GMW5BCgExh2CQxbnVG9XWsa91vux3Zp97l_cbm09b1-xsq-1B-LBK96rt89W-s7lqTT42pu5r3-ZL-322tce-ea2Dj9p3CTj3odv4xq-P1N-fYtygBb7Lbpxqoh2d8zD7fH1ZTd6L2eJtOhnPCo0R6gtKK20YsMBRCgmuqHEOiMpBUx0U5CyxJeBMYFAajgWvtNOlIYJrAzhmeJhNT1zj1VZ2of5SYS-9quVR8GEtVUhzN1aWFYPQcYEqrYklXCFSaUCYRqxMe7KJ9XBidcGneWMvt34X2vR9iQTnVJS4xMn1eHIdVhCDdf-vQiAPR5IXR8J_n8WEUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2988695353</pqid></control><display><type>article</type><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><source>Publicly Available Content Database</source><creator>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</creator><creatorcontrib>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</creatorcontrib><description>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14062438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>addition sequence ; Aerospace materials ; Alumina ; Aluminum ; ammonium aluminum carbonate hydroxide ; Atoms & subatomic particles ; Boehmite ; Chemical vapor deposition ; Chloride ; Composite materials ; Crystal structure ; Crystallization ; Methods ; microscopic morphology ; Microstructure ; Morphology ; Nitrates ; Phase transitions ; Pore size ; Potassium ; Raw materials ; reactant types ; Zeolites ; α-Al2O3</subject><ispartof>Applied sciences, 2024-03, Vol.14 (6), p.2438</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2988695353/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2988695353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wen, Weixiang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Xu, Mengxu</creatorcontrib><creatorcontrib>Gao, Yujuan</creatorcontrib><creatorcontrib>Yan, Pingke</creatorcontrib><creatorcontrib>Xu, Huabing</creatorcontrib><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><title>Applied sciences</title><description>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</description><subject>addition sequence</subject><subject>Aerospace materials</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>ammonium aluminum carbonate hydroxide</subject><subject>Atoms & subatomic particles</subject><subject>Boehmite</subject><subject>Chemical vapor deposition</subject><subject>Chloride</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Methods</subject><subject>microscopic morphology</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Phase transitions</subject><subject>Pore size</subject><subject>Potassium</subject><subject>Raw materials</subject><subject>reactant types</subject><subject>Zeolites</subject><subject>α-Al2O3</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclqwzAQhk1poSHNqS9g6LG41WYtxxC6BBICTXoWspbEwbVcyTnksfoifaYqCyVzmeHnn0-amSy7h-AJYwGeVddBAigimF9lAwQYLTCB7Pqivs1GMW5BCgExh2CQxbnVG9XWsa91vux3Zp97l_cbm09b1-xsq-1B-LBK96rt89W-s7lqTT42pu5r3-ZL-322tce-ea2Dj9p3CTj3odv4xq-P1N-fYtygBb7Lbpxqoh2d8zD7fH1ZTd6L2eJtOhnPCo0R6gtKK20YsMBRCgmuqHEOiMpBUx0U5CyxJeBMYFAajgWvtNOlIYJrAzhmeJhNT1zj1VZ2of5SYS-9quVR8GEtVUhzN1aWFYPQcYEqrYklXCFSaUCYRqxMe7KJ9XBidcGneWMvt34X2vR9iQTnVJS4xMn1eHIdVhCDdf-vQiAPR5IXR8J_n8WEUQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wen, Weixiang</creator><creator>Bai, Yang</creator><creator>Xu, Mengxu</creator><creator>Gao, Yujuan</creator><creator>Yan, Pingke</creator><creator>Xu, Huabing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20240301</creationdate><title>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</title><author>Wen, Weixiang ; Bai, Yang ; Xu, Mengxu ; Gao, Yujuan ; Yan, Pingke ; Xu, Huabing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>addition sequence</topic><topic>Aerospace materials</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>ammonium aluminum carbonate hydroxide</topic><topic>Atoms & subatomic particles</topic><topic>Boehmite</topic><topic>Chemical vapor deposition</topic><topic>Chloride</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Methods</topic><topic>microscopic morphology</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Phase transitions</topic><topic>Pore size</topic><topic>Potassium</topic><topic>Raw materials</topic><topic>reactant types</topic><topic>Zeolites</topic><topic>α-Al2O3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Weixiang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Xu, Mengxu</creatorcontrib><creatorcontrib>Gao, Yujuan</creatorcontrib><creatorcontrib>Yan, Pingke</creatorcontrib><creatorcontrib>Xu, Huabing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Weixiang</au><au>Bai, Yang</au><au>Xu, Mengxu</au><au>Gao, Yujuan</au><au>Yan, Pingke</au><au>Xu, Huabing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3</atitle><jtitle>Applied sciences</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>2438</spage><pages>2438-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>To perform an in-depth study of the crystal growth habits and phase changes of alumina and its precursors in reaction systems, this paper studied the effects of reactant type and addition order on the morphology of alumina using hydrothermal methods with different precipitants and aluminum sources as reactants. Research has shown that sodium bicarbonate and ammonium bicarbonate can be used as precipitants to prepare adhered spherical alumina and irregular short rod alumina, while potassium bicarbonate can be used as a precipitant to prepare hexagonal flake alumina. Using aluminum sulfate octahydrate, aluminum chloride hexahydrate, and aluminum nitrate, nine hydrates were prepared as aluminum sources, and agglomerated alumina, irregular short rod-shaped alumina, and fused alumina were obtained. The order of reactant addition affects the precursor phase of alumina, thereby affecting the microstructure of alumina after calcination, resulting in flake alumina with pores and short rod alumina. The results of this paper will provide theoretical guidance for the preparation of alumina with different micromorphologies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14062438</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-03, Vol.14 (6), p.2438 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b711f892bcc4e48a24bc047c275810e |
source | Publicly Available Content Database |
subjects | addition sequence Aerospace materials Alumina Aluminum ammonium aluminum carbonate hydroxide Atoms & subatomic particles Boehmite Chemical vapor deposition Chloride Composite materials Crystal structure Crystallization Methods microscopic morphology Microstructure Morphology Nitrates Phase transitions Pore size Potassium Raw materials reactant types Zeolites α-Al2O3 |
title | Mechanistic Study of the Influence of Reactant Type and Addition Sequence on the Microscopic Morphology of α-Al2O3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20the%20Influence%20of%20Reactant%20Type%20and%20Addition%20Sequence%20on%20the%20Microscopic%20Morphology%20of%20%CE%B1-Al2O3&rft.jtitle=Applied%20sciences&rft.au=Wen,%20Weixiang&rft.date=2024-03-01&rft.volume=14&rft.issue=6&rft.spage=2438&rft.pages=2438-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14062438&rft_dat=%3Cproquest_doaj_%3E2988695353%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-66bcd70e0f66143b6dff09bf1dbf6612fe4e50879305d8398bcfc5d498cd08373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2988695353&rft_id=info:pmid/&rfr_iscdi=true |