Loading…
Enhancing mitosis quantification and detection in meningiomas with computational digital pathology
Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology a...
Saved in:
Published in: | Acta neuropathologica communications 2024-01, Vol.12 (1), p.7-7, Article 7 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 7 |
container_title | Acta neuropathologica communications |
container_volume | 12 |
creator | Gu, Hongyan Yang, Chunxu Al-Kharouf, Issa Magaki, Shino Lakis, Nelli Williams, Christopher Kazu Alrosan, Sallam Mohammad Onstott, Ellie Kate Yan, Wenzhong Khanlou, Negar Cobos, Inma Zhang, Xinhai Robert Zarrin-Khameh, Neda Vinters, Harry V Chen, Xiang Anthony Haeri, Mohammad |
description | Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists' mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm's ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management. |
doi_str_mv | 10.1186/s40478-023-01707-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b8b379633eb4d5baddc254cb8cd856d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b8b379633eb4d5baddc254cb8cd856d</doaj_id><sourcerecordid>2914253824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3</originalsourceid><addsrcrecordid>eNpdkktrFTEYhgdRbKn9Ay5kwI2bqblfViKl2kLBja5DbjMnh5nkNMko_femZ2ppzSa353vI5e269xBcQCjY50IA4WIACA8AcsAH9qo7RYDCgUoGXj8bn3TnpexBaxJCLMTb7gQLBJEg4rQzV3Gnow1x6pdQUwmlv1t1rGEMVteQYq-j652v3h5nIfaLjw0PadGl_xPqrrdpOaz1SOu5d2EKtfUHXXdpTtP9u-7NqOfizx_7s-7Xt6ufl9fD7Y_vN5dfbwdLJK_DyA2RnhCshTRgxEhqSYw1TJqRQscpgBQJK7kkFgGN4Tg6iZgRThOGgMNn3c3mdUnv1SGHRed7lXRQx4WUJ6VzDXb2ihphMJcMY2-Io0Y7ZxEl1gjrBGUPri-b67CaxTvrY816fiF9uRPDTk3pt4KAC8QkaoZPj4ac7lZfqlpCsX6edfRpLQpJSBBtH0Ea-vE_dJ_W3N5yozCgQPJGoY2yOZWS_fh0GgjUQyTUFgnVIqGOkVCsFX14fo-nkn8BwH8Bf4yzzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914305097</pqid></control><display><type>article</type><title>Enhancing mitosis quantification and detection in meningiomas with computational digital pathology</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gu, Hongyan ; Yang, Chunxu ; Al-Kharouf, Issa ; Magaki, Shino ; Lakis, Nelli ; Williams, Christopher Kazu ; Alrosan, Sallam Mohammad ; Onstott, Ellie Kate ; Yan, Wenzhong ; Khanlou, Negar ; Cobos, Inma ; Zhang, Xinhai Robert ; Zarrin-Khameh, Neda ; Vinters, Harry V ; Chen, Xiang Anthony ; Haeri, Mohammad</creator><creatorcontrib>Gu, Hongyan ; Yang, Chunxu ; Al-Kharouf, Issa ; Magaki, Shino ; Lakis, Nelli ; Williams, Christopher Kazu ; Alrosan, Sallam Mohammad ; Onstott, Ellie Kate ; Yan, Wenzhong ; Khanlou, Negar ; Cobos, Inma ; Zhang, Xinhai Robert ; Zarrin-Khameh, Neda ; Vinters, Harry V ; Chen, Xiang Anthony ; Haeri, Mohammad</creatorcontrib><description>Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists' mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm's ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.</description><identifier>ISSN: 2051-5960</identifier><identifier>EISSN: 2051-5960</identifier><identifier>DOI: 10.1186/s40478-023-01707-6</identifier><identifier>PMID: 38212848</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Algorithms ; Annotations ; Artificial Intelligence ; Brain cancer ; Depth-first search ; Digital pathology ; Humans ; Meningeal Neoplasms - pathology ; Meningioma ; Meningioma - pathology ; Mitosis ; Mitotic Index - methods ; Pathologist group decision ; Pathology ; Tumors</subject><ispartof>Acta neuropathologica communications, 2024-01, Vol.12 (1), p.7-7, Article 7</ispartof><rights>2024. The Author(s).</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3</citedby><cites>FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3</cites><orcidid>0000-0001-6055-9779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782692/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2914305097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38212848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Hongyan</creatorcontrib><creatorcontrib>Yang, Chunxu</creatorcontrib><creatorcontrib>Al-Kharouf, Issa</creatorcontrib><creatorcontrib>Magaki, Shino</creatorcontrib><creatorcontrib>Lakis, Nelli</creatorcontrib><creatorcontrib>Williams, Christopher Kazu</creatorcontrib><creatorcontrib>Alrosan, Sallam Mohammad</creatorcontrib><creatorcontrib>Onstott, Ellie Kate</creatorcontrib><creatorcontrib>Yan, Wenzhong</creatorcontrib><creatorcontrib>Khanlou, Negar</creatorcontrib><creatorcontrib>Cobos, Inma</creatorcontrib><creatorcontrib>Zhang, Xinhai Robert</creatorcontrib><creatorcontrib>Zarrin-Khameh, Neda</creatorcontrib><creatorcontrib>Vinters, Harry V</creatorcontrib><creatorcontrib>Chen, Xiang Anthony</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><title>Enhancing mitosis quantification and detection in meningiomas with computational digital pathology</title><title>Acta neuropathologica communications</title><addtitle>Acta Neuropathol Commun</addtitle><description>Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists' mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm's ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Brain cancer</subject><subject>Depth-first search</subject><subject>Digital pathology</subject><subject>Humans</subject><subject>Meningeal Neoplasms - pathology</subject><subject>Meningioma</subject><subject>Meningioma - pathology</subject><subject>Mitosis</subject><subject>Mitotic Index - methods</subject><subject>Pathologist group decision</subject><subject>Pathology</subject><subject>Tumors</subject><issn>2051-5960</issn><issn>2051-5960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktrFTEYhgdRbKn9Ay5kwI2bqblfViKl2kLBja5DbjMnh5nkNMko_femZ2ppzSa353vI5e269xBcQCjY50IA4WIACA8AcsAH9qo7RYDCgUoGXj8bn3TnpexBaxJCLMTb7gQLBJEg4rQzV3Gnow1x6pdQUwmlv1t1rGEMVteQYq-j652v3h5nIfaLjw0PadGl_xPqrrdpOaz1SOu5d2EKtfUHXXdpTtP9u-7NqOfizx_7s-7Xt6ufl9fD7Y_vN5dfbwdLJK_DyA2RnhCshTRgxEhqSYw1TJqRQscpgBQJK7kkFgGN4Tg6iZgRThOGgMNn3c3mdUnv1SGHRed7lXRQx4WUJ6VzDXb2ihphMJcMY2-Io0Y7ZxEl1gjrBGUPri-b67CaxTvrY816fiF9uRPDTk3pt4KAC8QkaoZPj4ac7lZfqlpCsX6edfRpLQpJSBBtH0Ea-vE_dJ_W3N5yozCgQPJGoY2yOZWS_fh0GgjUQyTUFgnVIqGOkVCsFX14fo-nkn8BwH8Bf4yzzg</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Gu, Hongyan</creator><creator>Yang, Chunxu</creator><creator>Al-Kharouf, Issa</creator><creator>Magaki, Shino</creator><creator>Lakis, Nelli</creator><creator>Williams, Christopher Kazu</creator><creator>Alrosan, Sallam Mohammad</creator><creator>Onstott, Ellie Kate</creator><creator>Yan, Wenzhong</creator><creator>Khanlou, Negar</creator><creator>Cobos, Inma</creator><creator>Zhang, Xinhai Robert</creator><creator>Zarrin-Khameh, Neda</creator><creator>Vinters, Harry V</creator><creator>Chen, Xiang Anthony</creator><creator>Haeri, Mohammad</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6055-9779</orcidid></search><sort><creationdate>20240111</creationdate><title>Enhancing mitosis quantification and detection in meningiomas with computational digital pathology</title><author>Gu, Hongyan ; Yang, Chunxu ; Al-Kharouf, Issa ; Magaki, Shino ; Lakis, Nelli ; Williams, Christopher Kazu ; Alrosan, Sallam Mohammad ; Onstott, Ellie Kate ; Yan, Wenzhong ; Khanlou, Negar ; Cobos, Inma ; Zhang, Xinhai Robert ; Zarrin-Khameh, Neda ; Vinters, Harry V ; Chen, Xiang Anthony ; Haeri, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Brain cancer</topic><topic>Depth-first search</topic><topic>Digital pathology</topic><topic>Humans</topic><topic>Meningeal Neoplasms - pathology</topic><topic>Meningioma</topic><topic>Meningioma - pathology</topic><topic>Mitosis</topic><topic>Mitotic Index - methods</topic><topic>Pathologist group decision</topic><topic>Pathology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Hongyan</creatorcontrib><creatorcontrib>Yang, Chunxu</creatorcontrib><creatorcontrib>Al-Kharouf, Issa</creatorcontrib><creatorcontrib>Magaki, Shino</creatorcontrib><creatorcontrib>Lakis, Nelli</creatorcontrib><creatorcontrib>Williams, Christopher Kazu</creatorcontrib><creatorcontrib>Alrosan, Sallam Mohammad</creatorcontrib><creatorcontrib>Onstott, Ellie Kate</creatorcontrib><creatorcontrib>Yan, Wenzhong</creatorcontrib><creatorcontrib>Khanlou, Negar</creatorcontrib><creatorcontrib>Cobos, Inma</creatorcontrib><creatorcontrib>Zhang, Xinhai Robert</creatorcontrib><creatorcontrib>Zarrin-Khameh, Neda</creatorcontrib><creatorcontrib>Vinters, Harry V</creatorcontrib><creatorcontrib>Chen, Xiang Anthony</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Acta neuropathologica communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Hongyan</au><au>Yang, Chunxu</au><au>Al-Kharouf, Issa</au><au>Magaki, Shino</au><au>Lakis, Nelli</au><au>Williams, Christopher Kazu</au><au>Alrosan, Sallam Mohammad</au><au>Onstott, Ellie Kate</au><au>Yan, Wenzhong</au><au>Khanlou, Negar</au><au>Cobos, Inma</au><au>Zhang, Xinhai Robert</au><au>Zarrin-Khameh, Neda</au><au>Vinters, Harry V</au><au>Chen, Xiang Anthony</au><au>Haeri, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing mitosis quantification and detection in meningiomas with computational digital pathology</atitle><jtitle>Acta neuropathologica communications</jtitle><addtitle>Acta Neuropathol Commun</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>7</spage><epage>7</epage><pages>7-7</pages><artnum>7</artnum><issn>2051-5960</issn><eissn>2051-5960</eissn><abstract>Mitosis is a critical criterion for meningioma grading. However, pathologists' assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists' mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm's ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>38212848</pmid><doi>10.1186/s40478-023-01707-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6055-9779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-5960 |
ispartof | Acta neuropathologica communications, 2024-01, Vol.12 (1), p.7-7, Article 7 |
issn | 2051-5960 2051-5960 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b8b379633eb4d5baddc254cb8cd856d |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Annotations Artificial Intelligence Brain cancer Depth-first search Digital pathology Humans Meningeal Neoplasms - pathology Meningioma Meningioma - pathology Mitosis Mitotic Index - methods Pathologist group decision Pathology Tumors |
title | Enhancing mitosis quantification and detection in meningiomas with computational digital pathology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20mitosis%20quantification%20and%20detection%20in%20meningiomas%20with%20computational%20digital%20pathology&rft.jtitle=Acta%20neuropathologica%20communications&rft.au=Gu,%20Hongyan&rft.date=2024-01-11&rft.volume=12&rft.issue=1&rft.spage=7&rft.epage=7&rft.pages=7-7&rft.artnum=7&rft.issn=2051-5960&rft.eissn=2051-5960&rft_id=info:doi/10.1186/s40478-023-01707-6&rft_dat=%3Cproquest_doaj_%3E2914253824%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-f7b49e443a89b0f329a94bcb69bf51d7501528c9794c20a31ffd926b8da4620d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2914305097&rft_id=info:pmid/38212848&rfr_iscdi=true |