Loading…
Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection
This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) wi...
Saved in:
Published in: | Shock and vibration 2024, Vol.2024 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Shock and vibration |
container_volume | 2024 |
creator | Kun, Zhang Hongren, Li Xin, Wang Daxing, Xie Xiaokai, Sun |
description | This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts. |
doi_str_mv | 10.1155/2024/3374107 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814643242</galeid><doaj_id>oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621</doaj_id><sourcerecordid>A814643242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEqWw4wEssYS0_kucLEedMq3UisUMbK1r56bjUSYOtlM0O1a8A6_Hk-BhKpaVF7aOzv10fE9RvGf0grGquuSUy0shlGRUvSjOWKOqsuVUvMxvqmjZ1py_Lt7EuKOUVqKWZ8WvJeJE7uchuWhhQLL2fSo324Bx64eOrOdp8iGRb2iTD2QJCcgSow1uSs6PpM_i9biF0WJHbhAeD-VyTgeygkg2czBuRLLCEQMcx9eY4p-fv8li9HsYDpmUMjdz3havehgivnu6z4uvn683Vzfl3ZfV7dXirrSibVPZdEbYVkoQpuMcVcWlqGqj6g6ZMYYzw5umqaRiUOf_oTJ1Bb2UBvrWtoKL8-L2xO087PQU3B7CQXtw-p_gw4OGkJwdUFemMSABreqV5FADsxnfqr6Rjag5y6wPJ9YU_PcZY9I7P4cxx9cib7eRLRUquy5Oroe8Xe3G3qcANp8O9876EXuX9UXDZC0Fl8eIn04DNvgYA_b_YzKqjzXrY836qeZs_3iyb93YwQ_3vPsvSm2ntA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053849037</pqid></control><display><type>article</type><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun</creator><contributor>Giuffrida, Antonio ; Antonio Giuffrida</contributor><creatorcontrib>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun ; Giuffrida, Antonio ; Antonio Giuffrida</creatorcontrib><description>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2024/3374107</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Analysis ; Anomalies ; Artificial neural networks ; Case studies ; Efficiency ; Fault detection ; Feature extraction ; Gas turbines ; Maintenance ; Neural networks ; Optimization ; Smoothness ; Support vector machines ; Telecommunication systems ; Turbines ; Turbogenerators</subject><ispartof>Shock and vibration, 2024, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Zhang Kun et al.</rights><rights>COPYRIGHT 2024 John Wiley & Sons, Inc.</rights><rights>Copyright © 2024 Zhang Kun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</cites><orcidid>0009-0002-8937-2216 ; 0000-0002-3764-9087 ; 0009-0002-3515-5435 ; 0009-0007-0905-0839 ; 0009-0000-4761-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053849037/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053849037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Giuffrida, Antonio</contributor><contributor>Antonio Giuffrida</contributor><creatorcontrib>Kun, Zhang</creatorcontrib><creatorcontrib>Hongren, Li</creatorcontrib><creatorcontrib>Xin, Wang</creatorcontrib><creatorcontrib>Daxing, Xie</creatorcontrib><creatorcontrib>Xiaokai, Sun</creatorcontrib><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><title>Shock and vibration</title><description>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Efficiency</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Gas turbines</subject><subject>Maintenance</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Smoothness</subject><subject>Support vector machines</subject><subject>Telecommunication systems</subject><subject>Turbines</subject><subject>Turbogenerators</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAUhSMEEqWw4wEssYS0_kucLEedMq3UisUMbK1r56bjUSYOtlM0O1a8A6_Hk-BhKpaVF7aOzv10fE9RvGf0grGquuSUy0shlGRUvSjOWKOqsuVUvMxvqmjZ1py_Lt7EuKOUVqKWZ8WvJeJE7uchuWhhQLL2fSo324Bx64eOrOdp8iGRb2iTD2QJCcgSow1uSs6PpM_i9biF0WJHbhAeD-VyTgeygkg2czBuRLLCEQMcx9eY4p-fv8li9HsYDpmUMjdz3havehgivnu6z4uvn683Vzfl3ZfV7dXirrSibVPZdEbYVkoQpuMcVcWlqGqj6g6ZMYYzw5umqaRiUOf_oTJ1Bb2UBvrWtoKL8-L2xO087PQU3B7CQXtw-p_gw4OGkJwdUFemMSABreqV5FADsxnfqr6Rjag5y6wPJ9YU_PcZY9I7P4cxx9cib7eRLRUquy5Oroe8Xe3G3qcANp8O9876EXuX9UXDZC0Fl8eIn04DNvgYA_b_YzKqjzXrY836qeZs_3iyb93YwQ_3vPsvSm2ntA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kun, Zhang</creator><creator>Hongren, Li</creator><creator>Xin, Wang</creator><creator>Daxing, Xie</creator><creator>Xiaokai, Sun</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8937-2216</orcidid><orcidid>https://orcid.org/0000-0002-3764-9087</orcidid><orcidid>https://orcid.org/0009-0002-3515-5435</orcidid><orcidid>https://orcid.org/0009-0007-0905-0839</orcidid><orcidid>https://orcid.org/0009-0000-4761-4104</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><author>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Efficiency</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Gas turbines</topic><topic>Maintenance</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Smoothness</topic><topic>Support vector machines</topic><topic>Telecommunication systems</topic><topic>Turbines</topic><topic>Turbogenerators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Zhang</creatorcontrib><creatorcontrib>Hongren, Li</creatorcontrib><creatorcontrib>Xin, Wang</creatorcontrib><creatorcontrib>Daxing, Xie</creatorcontrib><creatorcontrib>Xiaokai, Sun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Zhang</au><au>Hongren, Li</au><au>Xin, Wang</au><au>Daxing, Xie</au><au>Xiaokai, Sun</au><au>Giuffrida, Antonio</au><au>Antonio Giuffrida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</atitle><jtitle>Shock and vibration</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2024/3374107</doi><orcidid>https://orcid.org/0009-0002-8937-2216</orcidid><orcidid>https://orcid.org/0000-0002-3764-9087</orcidid><orcidid>https://orcid.org/0009-0002-3515-5435</orcidid><orcidid>https://orcid.org/0009-0007-0905-0839</orcidid><orcidid>https://orcid.org/0009-0000-4761-4104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9622 |
ispartof | Shock and vibration, 2024, Vol.2024 (1) |
issn | 1070-9622 1875-9203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621 |
source | Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Algorithms Analysis Anomalies Artificial neural networks Case studies Efficiency Fault detection Feature extraction Gas turbines Maintenance Neural networks Optimization Smoothness Support vector machines Telecommunication systems Turbines Turbogenerators |
title | Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiscale%20Soft-Threshold%20Support%20Vector%20Data%20Description%20for%20Enhanced%20Heavy-Duty%20Gas%20Turbine%20Generator%20Sets%E2%80%99%20Anomaly%20Detection&rft.jtitle=Shock%20and%20vibration&rft.au=Kun,%20Zhang&rft.date=2024&rft.volume=2024&rft.issue=1&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2024/3374107&rft_dat=%3Cgale_doaj_%3EA814643242%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053849037&rft_id=info:pmid/&rft_galeid=A814643242&rfr_iscdi=true |