Loading…

Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection

This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) wi...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2024, Vol.2024 (1)
Main Authors: Kun, Zhang, Hongren, Li, Xin, Wang, Daxing, Xie, Xiaokai, Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323
container_end_page
container_issue 1
container_start_page
container_title Shock and vibration
container_volume 2024
creator Kun, Zhang
Hongren, Li
Xin, Wang
Daxing, Xie
Xiaokai, Sun
description This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.
doi_str_mv 10.1155/2024/3374107
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814643242</galeid><doaj_id>oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621</doaj_id><sourcerecordid>A814643242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEqWw4wEssYS0_kucLEedMq3UisUMbK1r56bjUSYOtlM0O1a8A6_Hk-BhKpaVF7aOzv10fE9RvGf0grGquuSUy0shlGRUvSjOWKOqsuVUvMxvqmjZ1py_Lt7EuKOUVqKWZ8WvJeJE7uchuWhhQLL2fSo324Bx64eOrOdp8iGRb2iTD2QJCcgSow1uSs6PpM_i9biF0WJHbhAeD-VyTgeygkg2czBuRLLCEQMcx9eY4p-fv8li9HsYDpmUMjdz3havehgivnu6z4uvn683Vzfl3ZfV7dXirrSibVPZdEbYVkoQpuMcVcWlqGqj6g6ZMYYzw5umqaRiUOf_oTJ1Bb2UBvrWtoKL8-L2xO087PQU3B7CQXtw-p_gw4OGkJwdUFemMSABreqV5FADsxnfqr6Rjag5y6wPJ9YU_PcZY9I7P4cxx9cib7eRLRUquy5Oroe8Xe3G3qcANp8O9876EXuX9UXDZC0Fl8eIn04DNvgYA_b_YzKqjzXrY836qeZs_3iyb93YwQ_3vPsvSm2ntA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053849037</pqid></control><display><type>article</type><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun</creator><contributor>Giuffrida, Antonio ; Antonio Giuffrida</contributor><creatorcontrib>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun ; Giuffrida, Antonio ; Antonio Giuffrida</creatorcontrib><description>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2024/3374107</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Analysis ; Anomalies ; Artificial neural networks ; Case studies ; Efficiency ; Fault detection ; Feature extraction ; Gas turbines ; Maintenance ; Neural networks ; Optimization ; Smoothness ; Support vector machines ; Telecommunication systems ; Turbines ; Turbogenerators</subject><ispartof>Shock and vibration, 2024, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Zhang Kun et al.</rights><rights>COPYRIGHT 2024 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2024 Zhang Kun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</cites><orcidid>0009-0002-8937-2216 ; 0000-0002-3764-9087 ; 0009-0002-3515-5435 ; 0009-0007-0905-0839 ; 0009-0000-4761-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3053849037/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3053849037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Giuffrida, Antonio</contributor><contributor>Antonio Giuffrida</contributor><creatorcontrib>Kun, Zhang</creatorcontrib><creatorcontrib>Hongren, Li</creatorcontrib><creatorcontrib>Xin, Wang</creatorcontrib><creatorcontrib>Daxing, Xie</creatorcontrib><creatorcontrib>Xiaokai, Sun</creatorcontrib><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><title>Shock and vibration</title><description>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Efficiency</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Gas turbines</subject><subject>Maintenance</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Smoothness</subject><subject>Support vector machines</subject><subject>Telecommunication systems</subject><subject>Turbines</subject><subject>Turbogenerators</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAUhSMEEqWw4wEssYS0_kucLEedMq3UisUMbK1r56bjUSYOtlM0O1a8A6_Hk-BhKpaVF7aOzv10fE9RvGf0grGquuSUy0shlGRUvSjOWKOqsuVUvMxvqmjZ1py_Lt7EuKOUVqKWZ8WvJeJE7uchuWhhQLL2fSo324Bx64eOrOdp8iGRb2iTD2QJCcgSow1uSs6PpM_i9biF0WJHbhAeD-VyTgeygkg2czBuRLLCEQMcx9eY4p-fv8li9HsYDpmUMjdz3havehgivnu6z4uvn683Vzfl3ZfV7dXirrSibVPZdEbYVkoQpuMcVcWlqGqj6g6ZMYYzw5umqaRiUOf_oTJ1Bb2UBvrWtoKL8-L2xO087PQU3B7CQXtw-p_gw4OGkJwdUFemMSABreqV5FADsxnfqr6Rjag5y6wPJ9YU_PcZY9I7P4cxx9cib7eRLRUquy5Oroe8Xe3G3qcANp8O9876EXuX9UXDZC0Fl8eIn04DNvgYA_b_YzKqjzXrY836qeZs_3iyb93YwQ_3vPsvSm2ntA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kun, Zhang</creator><creator>Hongren, Li</creator><creator>Xin, Wang</creator><creator>Daxing, Xie</creator><creator>Xiaokai, Sun</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8937-2216</orcidid><orcidid>https://orcid.org/0000-0002-3764-9087</orcidid><orcidid>https://orcid.org/0009-0002-3515-5435</orcidid><orcidid>https://orcid.org/0009-0007-0905-0839</orcidid><orcidid>https://orcid.org/0009-0000-4761-4104</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</title><author>Kun, Zhang ; Hongren, Li ; Xin, Wang ; Daxing, Xie ; Xiaokai, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Efficiency</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Gas turbines</topic><topic>Maintenance</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Smoothness</topic><topic>Support vector machines</topic><topic>Telecommunication systems</topic><topic>Turbines</topic><topic>Turbogenerators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Zhang</creatorcontrib><creatorcontrib>Hongren, Li</creatorcontrib><creatorcontrib>Xin, Wang</creatorcontrib><creatorcontrib>Daxing, Xie</creatorcontrib><creatorcontrib>Xiaokai, Sun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Zhang</au><au>Hongren, Li</au><au>Xin, Wang</au><au>Daxing, Xie</au><au>Xiaokai, Sun</au><au>Giuffrida, Antonio</au><au>Antonio Giuffrida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection</atitle><jtitle>Shock and vibration</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>This paper introduces an innovative approach, Deep Multiscale Soft-Threshold Support Vector Data Description (DMS-SVDD), designed for the detection of anomalies and prediction of faults in heavy-duty gas turbine generator sets (GENSETs). The model combines a support vector data description (SVDD) with a deep autoencoder backbone network framework, integrating a multiscale convolutional neural network (M) and soft-threshold activation network (S) into the Deep-SVDD framework. In comparison with conventional methods, such as One-Class Support Vector Machine (OCSVM) and autoencoder (AE), DMS-SVDD demonstrates improvements in accuracy (by 22.94%), recall (by 32%), F1 score (by 12.02%), and smoothness (by 39.15%). The model excels particularly in feature extraction, denoising, and early fault detection, offering a proactive strategy for maintenance. Furthermore, the DMS-SVDD demonstrated enhanced training efficiency with a reduction in the convergence rounds by 66% and overall training times by 34.13%. The study concludes that DMS-SVDD presents a robust and efficient solution for gas turbine anomaly detection, with practical advantages for decision support in turbine maintenance. Future research could explore additional refinements and applications of the DMS-SVDD model across diverse industrial contexts.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2024/3374107</doi><orcidid>https://orcid.org/0009-0002-8937-2216</orcidid><orcidid>https://orcid.org/0000-0002-3764-9087</orcidid><orcidid>https://orcid.org/0009-0002-3515-5435</orcidid><orcidid>https://orcid.org/0009-0007-0905-0839</orcidid><orcidid>https://orcid.org/0009-0000-4761-4104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2024, Vol.2024 (1)
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b8ba4aec7f742a6a1c1b297f8483621
source Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess)
subjects Algorithms
Analysis
Anomalies
Artificial neural networks
Case studies
Efficiency
Fault detection
Feature extraction
Gas turbines
Maintenance
Neural networks
Optimization
Smoothness
Support vector machines
Telecommunication systems
Turbines
Turbogenerators
title Deep Multiscale Soft-Threshold Support Vector Data Description for Enhanced Heavy-Duty Gas Turbine Generator Sets’ Anomaly Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiscale%20Soft-Threshold%20Support%20Vector%20Data%20Description%20for%20Enhanced%20Heavy-Duty%20Gas%20Turbine%20Generator%20Sets%E2%80%99%20Anomaly%20Detection&rft.jtitle=Shock%20and%20vibration&rft.au=Kun,%20Zhang&rft.date=2024&rft.volume=2024&rft.issue=1&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2024/3374107&rft_dat=%3Cgale_doaj_%3EA814643242%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-8db3c944a3bd22e7524356b76de1bbb21b28885471a6536e7b65af44baf9c9323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053849037&rft_id=info:pmid/&rft_galeid=A814643242&rfr_iscdi=true