Loading…
Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption
In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that ac...
Saved in:
Published in: | Cogent engineering 2020-01, Vol.7 (1), p.1767833 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3 |
container_end_page | |
container_issue | 1 |
container_start_page | 1767833 |
container_title | Cogent engineering |
container_volume | 7 |
creator | Saithong, Chirakiat Lekhavat, Saowanit |
description | In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments. |
doi_str_mv | 10.1080/23311916.2020.1767833 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b900a39ebbf47518442da800f87721b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b900a39ebbf47518442da800f87721b</doaj_id><sourcerecordid>2488087272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCGQiEI-AckS10zwY8b23kDhFSkSFzhbPXY7eOMdD7Y3sF_C7-LZDYgTF7u7urq6W9V1Lxm9YlTT11wIxjZMXnHKG6Sk0kI86c5WvF8LT_-Jn3cXpWwppUwMI93Qs-7XO8zhAWpIM0me2JgKut6nvCP4c8lYylppOUlLDTuIZIKCpNRk70nEB4zEprkE12TmO7JAruFIsvcpN_CSOKyYd2EOpQbbsh3M7pK05yjyDY5w2S9LPBAXSt4v6zIvumceYsGLx_-8-_rh_ZfrT_3t5483129veztKWvtRc2sR_QCgJcPRSk-9GIRXmoNWemiBBKu9d3JUTKBFyaRUTotBuQnFeXdz0nUJtmbJ7cR8MAmCOQIp35n1JBvRjNOGUhAbnCY_qJHpYeAONKVeK8XZ1LRenbSWnL7vsVSzTfs8t_UNH7SmWnHFG2s8sWxOpWT0f6cyalZLzR9LzWqpebS09b059YV5tQd-pBydqXCIKfsMsw3FiP9L_AbQvKsM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488087272</pqid></control><display><type>article</type><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><source>Taylor & Francis Open Access</source><source>Publicly Available Content Database</source><creator>Saithong, Chirakiat ; Lekhavat, Saowanit</creator><contributor>Meng, Wei</contributor><creatorcontrib>Saithong, Chirakiat ; Lekhavat, Saowanit ; Meng, Wei</creatorcontrib><description>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2020.1767833</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Backorders ; Closed form solutions ; closed-form expression ; Continuity (mathematics) ; Disruption ; Exact solutions ; Inventory ; optimal base stock level ; partial backorder ; periodic review base stock policy ; Random variables ; Suppliers ; supply disruption</subject><ispartof>Cogent engineering, 2020-01, Vol.7 (1), p.1767833</ispartof><rights>2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2020</rights><rights>2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</citedby><cites>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</cites><orcidid>0000-0002-6615-9861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2020.1767833$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2488087272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><contributor>Meng, Wei</contributor><creatorcontrib>Saithong, Chirakiat</creatorcontrib><creatorcontrib>Lekhavat, Saowanit</creatorcontrib><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><title>Cogent engineering</title><description>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</description><subject>Backorders</subject><subject>Closed form solutions</subject><subject>closed-form expression</subject><subject>Continuity (mathematics)</subject><subject>Disruption</subject><subject>Exact solutions</subject><subject>Inventory</subject><subject>optimal base stock level</subject><subject>partial backorder</subject><subject>periodic review base stock policy</subject><subject>Random variables</subject><subject>Suppliers</subject><subject>supply disruption</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctuFDEQHCGQiEI-AckS10zwY8b23kDhFSkSFzhbPXY7eOMdD7Y3sF_C7-LZDYgTF7u7urq6W9V1Lxm9YlTT11wIxjZMXnHKG6Sk0kI86c5WvF8LT_-Jn3cXpWwppUwMI93Qs-7XO8zhAWpIM0me2JgKut6nvCP4c8lYylppOUlLDTuIZIKCpNRk70nEB4zEprkE12TmO7JAruFIsvcpN_CSOKyYd2EOpQbbsh3M7pK05yjyDY5w2S9LPBAXSt4v6zIvumceYsGLx_-8-_rh_ZfrT_3t5483129veztKWvtRc2sR_QCgJcPRSk-9GIRXmoNWemiBBKu9d3JUTKBFyaRUTotBuQnFeXdz0nUJtmbJ7cR8MAmCOQIp35n1JBvRjNOGUhAbnCY_qJHpYeAONKVeK8XZ1LRenbSWnL7vsVSzTfs8t_UNH7SmWnHFG2s8sWxOpWT0f6cyalZLzR9LzWqpebS09b059YV5tQd-pBydqXCIKfsMsw3FiP9L_AbQvKsM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Saithong, Chirakiat</creator><creator>Lekhavat, Saowanit</creator><general>Cogent</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6615-9861</orcidid></search><sort><creationdate>20200101</creationdate><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><author>Saithong, Chirakiat ; Lekhavat, Saowanit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backorders</topic><topic>Closed form solutions</topic><topic>closed-form expression</topic><topic>Continuity (mathematics)</topic><topic>Disruption</topic><topic>Exact solutions</topic><topic>Inventory</topic><topic>optimal base stock level</topic><topic>partial backorder</topic><topic>periodic review base stock policy</topic><topic>Random variables</topic><topic>Suppliers</topic><topic>supply disruption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saithong, Chirakiat</creatorcontrib><creatorcontrib>Lekhavat, Saowanit</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saithong, Chirakiat</au><au>Lekhavat, Saowanit</au><au>Meng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</atitle><jtitle>Cogent engineering</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1767833</spage><pages>1767833-</pages><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2020.1767833</doi><orcidid>https://orcid.org/0000-0002-6615-9861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-1916 |
ispartof | Cogent engineering, 2020-01, Vol.7 (1), p.1767833 |
issn | 2331-1916 2331-1916 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b900a39ebbf47518442da800f87721b |
source | Taylor & Francis Open Access; Publicly Available Content Database |
subjects | Backorders Closed form solutions closed-form expression Continuity (mathematics) Disruption Exact solutions Inventory optimal base stock level partial backorder periodic review base stock policy Random variables Suppliers supply disruption |
title | Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20closed-form%20expression%20for%20optimal%20base%20stock%20level%20considering%20partial%20backorder,%20deterministic%20demand,%20and%20stochastic%20supply%20disruption&rft.jtitle=Cogent%20engineering&rft.au=Saithong,%20Chirakiat&rft.date=2020-01-01&rft.volume=7&rft.issue=1&rft.spage=1767833&rft.pages=1767833-&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2020.1767833&rft_dat=%3Cproquest_doaj_%3E2488087272%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488087272&rft_id=info:pmid/&rfr_iscdi=true |