Loading…

Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption

In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that ac...

Full description

Saved in:
Bibliographic Details
Published in:Cogent engineering 2020-01, Vol.7 (1), p.1767833
Main Authors: Saithong, Chirakiat, Lekhavat, Saowanit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3
cites cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3
container_end_page
container_issue 1
container_start_page 1767833
container_title Cogent engineering
container_volume 7
creator Saithong, Chirakiat
Lekhavat, Saowanit
description In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.
doi_str_mv 10.1080/23311916.2020.1767833
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b900a39ebbf47518442da800f87721b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b900a39ebbf47518442da800f87721b</doaj_id><sourcerecordid>2488087272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCGQiEI-AckS10zwY8b23kDhFSkSFzhbPXY7eOMdD7Y3sF_C7-LZDYgTF7u7urq6W9V1Lxm9YlTT11wIxjZMXnHKG6Sk0kI86c5WvF8LT_-Jn3cXpWwppUwMI93Qs-7XO8zhAWpIM0me2JgKut6nvCP4c8lYylppOUlLDTuIZIKCpNRk70nEB4zEprkE12TmO7JAruFIsvcpN_CSOKyYd2EOpQbbsh3M7pK05yjyDY5w2S9LPBAXSt4v6zIvumceYsGLx_-8-_rh_ZfrT_3t5483129veztKWvtRc2sR_QCgJcPRSk-9GIRXmoNWemiBBKu9d3JUTKBFyaRUTotBuQnFeXdz0nUJtmbJ7cR8MAmCOQIp35n1JBvRjNOGUhAbnCY_qJHpYeAONKVeK8XZ1LRenbSWnL7vsVSzTfs8t_UNH7SmWnHFG2s8sWxOpWT0f6cyalZLzR9LzWqpebS09b059YV5tQd-pBydqXCIKfsMsw3FiP9L_AbQvKsM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488087272</pqid></control><display><type>article</type><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><creator>Saithong, Chirakiat ; Lekhavat, Saowanit</creator><contributor>Meng, Wei</contributor><creatorcontrib>Saithong, Chirakiat ; Lekhavat, Saowanit ; Meng, Wei</creatorcontrib><description>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2020.1767833</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Backorders ; Closed form solutions ; closed-form expression ; Continuity (mathematics) ; Disruption ; Exact solutions ; Inventory ; optimal base stock level ; partial backorder ; periodic review base stock policy ; Random variables ; Suppliers ; supply disruption</subject><ispartof>Cogent engineering, 2020-01, Vol.7 (1), p.1767833</ispartof><rights>2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2020</rights><rights>2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</citedby><cites>FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</cites><orcidid>0000-0002-6615-9861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2020.1767833$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2488087272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><contributor>Meng, Wei</contributor><creatorcontrib>Saithong, Chirakiat</creatorcontrib><creatorcontrib>Lekhavat, Saowanit</creatorcontrib><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><title>Cogent engineering</title><description>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</description><subject>Backorders</subject><subject>Closed form solutions</subject><subject>closed-form expression</subject><subject>Continuity (mathematics)</subject><subject>Disruption</subject><subject>Exact solutions</subject><subject>Inventory</subject><subject>optimal base stock level</subject><subject>partial backorder</subject><subject>periodic review base stock policy</subject><subject>Random variables</subject><subject>Suppliers</subject><subject>supply disruption</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctuFDEQHCGQiEI-AckS10zwY8b23kDhFSkSFzhbPXY7eOMdD7Y3sF_C7-LZDYgTF7u7urq6W9V1Lxm9YlTT11wIxjZMXnHKG6Sk0kI86c5WvF8LT_-Jn3cXpWwppUwMI93Qs-7XO8zhAWpIM0me2JgKut6nvCP4c8lYylppOUlLDTuIZIKCpNRk70nEB4zEprkE12TmO7JAruFIsvcpN_CSOKyYd2EOpQbbsh3M7pK05yjyDY5w2S9LPBAXSt4v6zIvumceYsGLx_-8-_rh_ZfrT_3t5483129veztKWvtRc2sR_QCgJcPRSk-9GIRXmoNWemiBBKu9d3JUTKBFyaRUTotBuQnFeXdz0nUJtmbJ7cR8MAmCOQIp35n1JBvRjNOGUhAbnCY_qJHpYeAONKVeK8XZ1LRenbSWnL7vsVSzTfs8t_UNH7SmWnHFG2s8sWxOpWT0f6cyalZLzR9LzWqpebS09b059YV5tQd-pBydqXCIKfsMsw3FiP9L_AbQvKsM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Saithong, Chirakiat</creator><creator>Lekhavat, Saowanit</creator><general>Cogent</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6615-9861</orcidid></search><sort><creationdate>20200101</creationdate><title>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</title><author>Saithong, Chirakiat ; Lekhavat, Saowanit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backorders</topic><topic>Closed form solutions</topic><topic>closed-form expression</topic><topic>Continuity (mathematics)</topic><topic>Disruption</topic><topic>Exact solutions</topic><topic>Inventory</topic><topic>optimal base stock level</topic><topic>partial backorder</topic><topic>periodic review base stock policy</topic><topic>Random variables</topic><topic>Suppliers</topic><topic>supply disruption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saithong, Chirakiat</creatorcontrib><creatorcontrib>Lekhavat, Saowanit</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saithong, Chirakiat</au><au>Lekhavat, Saowanit</au><au>Meng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption</atitle><jtitle>Cogent engineering</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1767833</spage><pages>1767833-</pages><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>In the presence of stochastic supply disruption, the optimal variables of an inventory policy must be determined appropriately. Considering a two-echelon system comprised of a supplier and a retailer, the objective of this research is to help the retailer derives the optimal base stock level that achieves the minimum costs per unit of time regarding the stochastic unavailability of the supplier. The expression of the optimal base stock level is determined in closed-form in consideration of a continuous random variable of a disruption length together with a partial backorder of shortage inventory. A solution method which facilitates the retailer to derive the correct expression for the optimal base stock level is proposed. The applicability of the proposed solution method is illustrated through numerical experiments.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2020.1767833</doi><orcidid>https://orcid.org/0000-0002-6615-9861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-1916
ispartof Cogent engineering, 2020-01, Vol.7 (1), p.1767833
issn 2331-1916
2331-1916
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5b900a39ebbf47518442da800f87721b
source Taylor & Francis Open Access; Publicly Available Content Database
subjects Backorders
Closed form solutions
closed-form expression
Continuity (mathematics)
Disruption
Exact solutions
Inventory
optimal base stock level
partial backorder
periodic review base stock policy
Random variables
Suppliers
supply disruption
title Derivation of closed-form expression for optimal base stock level considering partial backorder, deterministic demand, and stochastic supply disruption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20closed-form%20expression%20for%20optimal%20base%20stock%20level%20considering%20partial%20backorder,%20deterministic%20demand,%20and%20stochastic%20supply%20disruption&rft.jtitle=Cogent%20engineering&rft.au=Saithong,%20Chirakiat&rft.date=2020-01-01&rft.volume=7&rft.issue=1&rft.spage=1767833&rft.pages=1767833-&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2020.1767833&rft_dat=%3Cproquest_doaj_%3E2488087272%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-582cceef4aa861e5c6f0f343f782a8784f786ac8ffd65713ece61667d8347dbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488087272&rft_id=info:pmid/&rfr_iscdi=true