Loading…
Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication
This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a d...
Saved in:
Published in: | International journal of applied mathematics and computer science 2019-03, Vol.29 (1), p.179-194 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123 |
container_end_page | 194 |
container_issue | 1 |
container_start_page | 179 |
container_title | International journal of applied mathematics and computer science |
container_volume | 29 |
creator | Djennoune, Said Bettayeb, Maamar Al-Saggaf, Ubaid Muhsen |
description | This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence of an unknown input is also studied. Third, secure data communication based on a generalized fractional-order Hénon map is proposed. Numerical simulations and application to secure speech communication are presented to show the efficiency of the proposed approach. |
doi_str_mv | 10.2478/amcs-2019-0014 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5b955fe50ac54f149d59c40452ddf3b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b955fe50ac54f149d59c40452ddf3b3</doaj_id><sourcerecordid>2203781289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123</originalsourceid><addsrcrecordid>eNptkc1u1TAQhSMEEqWwZW2JdYp_b2LEpqqAVqrEAlhbk_GkzVUSX2xHEFY8A7xhnwSHWwELVj46mnNG46-qngt-JnXTvoQJUy25sDXnQj-oTiRvVd1qKx_-ox9XT1Lacy4tb9RJ9ePDOuNtDPPwDfIQZhZ61kfATcN49_1niJ4i80PCSJmKkYeJGN5CyAOytKZMU2LdymBm9LUEmacRVvIsZcjEImGYU44L5hBfsfPDYRzwuCoHlgiXWOrCNC3zvf-0etTDmOjZ_XtafXr75uPFZX39_t3Vxfl1jVruck3SkDaEhKbjuwa55pxUowXItkMuyVivPHTAe1IKd1abHkB3QvcGGyHVaXV17PUB9u4Qhwni6gIM7rcR4o2DWI4cyZnOGtOT4YBG90Jbbyxqro30vledKl0vjl2HGD4vlLLbhyWWH0xOSq6aVsjWlqmz4xTGkFKk_s9Wwd3G0G0M3cbQbQxL4PUx8AXGTIXETVzWIv62_z8orRCNVb8A9YKpzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203781289</pqid></control><display><type>article</type><title>Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication</title><source>Freely Accessible Journals</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creator><creatorcontrib>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</creatorcontrib><description>This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence of an unknown input is also studied. Third, secure data communication based on a generalized fractional-order Hénon map is proposed. Numerical simulations and application to secure speech communication are presented to show the efficiency of the proposed approach.</description><identifier>ISSN: 2083-8492</identifier><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.2478/amcs-2019-0014</identifier><language>eng</language><publisher>Zielona Góra: Sciendo</publisher><subject>Chaos theory ; chaotic map ; chaotic synchronization ; Communication ; Computer simulation ; dead-beat observer ; Discrete time systems ; fractional-order discrete time systems ; Nonlinear systems ; Observability (systems) ; secure data communication ; Synchronism ; Time synchronization</subject><ispartof>International journal of applied mathematics and computer science, 2019-03, Vol.29 (1), p.179-194</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123</citedby><cites>FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2203781289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><title>Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence of an unknown input is also studied. Third, secure data communication based on a generalized fractional-order Hénon map is proposed. Numerical simulations and application to secure speech communication are presented to show the efficiency of the proposed approach.</description><subject>Chaos theory</subject><subject>chaotic map</subject><subject>chaotic synchronization</subject><subject>Communication</subject><subject>Computer simulation</subject><subject>dead-beat observer</subject><subject>Discrete time systems</subject><subject>fractional-order discrete time systems</subject><subject>Nonlinear systems</subject><subject>Observability (systems)</subject><subject>secure data communication</subject><subject>Synchronism</subject><subject>Time synchronization</subject><issn>2083-8492</issn><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1u1TAQhSMEEqWwZW2JdYp_b2LEpqqAVqrEAlhbk_GkzVUSX2xHEFY8A7xhnwSHWwELVj46mnNG46-qngt-JnXTvoQJUy25sDXnQj-oTiRvVd1qKx_-ox9XT1Lacy4tb9RJ9ePDOuNtDPPwDfIQZhZ61kfATcN49_1niJ4i80PCSJmKkYeJGN5CyAOytKZMU2LdymBm9LUEmacRVvIsZcjEImGYU44L5hBfsfPDYRzwuCoHlgiXWOrCNC3zvf-0etTDmOjZ_XtafXr75uPFZX39_t3Vxfl1jVruck3SkDaEhKbjuwa55pxUowXItkMuyVivPHTAe1IKd1abHkB3QvcGGyHVaXV17PUB9u4Qhwni6gIM7rcR4o2DWI4cyZnOGtOT4YBG90Jbbyxqro30vledKl0vjl2HGD4vlLLbhyWWH0xOSq6aVsjWlqmz4xTGkFKk_s9Wwd3G0G0M3cbQbQxL4PUx8AXGTIXETVzWIv62_z8orRCNVb8A9YKpzQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Djennoune, Said</creator><creator>Bettayeb, Maamar</creator><creator>Al-Saggaf, Ubaid Muhsen</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20190301</creationdate><title>Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication</title><author>Djennoune, Said ; Bettayeb, Maamar ; Al-Saggaf, Ubaid Muhsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chaos theory</topic><topic>chaotic map</topic><topic>chaotic synchronization</topic><topic>Communication</topic><topic>Computer simulation</topic><topic>dead-beat observer</topic><topic>Discrete time systems</topic><topic>fractional-order discrete time systems</topic><topic>Nonlinear systems</topic><topic>Observability (systems)</topic><topic>secure data communication</topic><topic>Synchronism</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djennoune, Said</creatorcontrib><creatorcontrib>Bettayeb, Maamar</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid Muhsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djennoune, Said</au><au>Bettayeb, Maamar</au><au>Al-Saggaf, Ubaid Muhsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>179</spage><epage>194</epage><pages>179-194</pages><issn>2083-8492</issn><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence of an unknown input is also studied. Third, secure data communication based on a generalized fractional-order Hénon map is proposed. Numerical simulations and application to secure speech communication are presented to show the efficiency of the proposed approach.</abstract><cop>Zielona Góra</cop><pub>Sciendo</pub><doi>10.2478/amcs-2019-0014</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2083-8492 |
ispartof | International journal of applied mathematics and computer science, 2019-03, Vol.29 (1), p.179-194 |
issn | 2083-8492 1641-876X 2083-8492 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5b955fe50ac54f149d59c40452ddf3b3 |
source | Freely Accessible Journals; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Chaos theory chaotic map chaotic synchronization Communication Computer simulation dead-beat observer Discrete time systems fractional-order discrete time systems Nonlinear systems Observability (systems) secure data communication Synchronism Time synchronization |
title | Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20fractional%E2%80%93order%20discrete%E2%80%93time%20chaotic%20systems%20by%20an%20exact%20delayed%20state%20reconstructor:%20Application%20to%20secure%20communication&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Djennoune,%20Said&rft.date=2019-03-01&rft.volume=29&rft.issue=1&rft.spage=179&rft.epage=194&rft.pages=179-194&rft.issn=2083-8492&rft.eissn=2083-8492&rft_id=info:doi/10.2478/amcs-2019-0014&rft_dat=%3Cproquest_doaj_%3E2203781289%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-e25e45ecec5b067c0400e3741a28bc02e59d3daba0fe33c6945faa4b14f5c7123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203781289&rft_id=info:pmid/&rfr_iscdi=true |