Loading…

Automatic detection of the mental foramen for estimating mandibular cortical width in dental panoramic radiographs: the seventh survey of the Tromsø Study (Tromsø7) in 2015–2016

Objective To apply deep learning to a data set of dental panoramic radiographs to detect the mental foramen for automatic assessment of the mandibular cortical width. Methods Data from the seventh survey of the Tromsø Study (Tromsø7) were used. The data set contained 5197 randomly chosen dental pano...

Full description

Saved in:
Bibliographic Details
Published in:Journal of international medical research 2022-11, Vol.50 (11), p.3000605221135147-3000605221135147
Main Authors: Edvardsen, Isak Paasche, Teterina, Anna, Johansen, Thomas, Myhre, Jonas Nordhaug, Godtliebsen, Fred, Bolstad, Napat Limchaichana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective To apply deep learning to a data set of dental panoramic radiographs to detect the mental foramen for automatic assessment of the mandibular cortical width. Methods Data from the seventh survey of the Tromsø Study (Tromsø7) were used. The data set contained 5197 randomly chosen dental panoramic radiographs. Four pretrained object detectors were tested. We randomly chose 80% of the data for training and 20% for testing. Models were trained using GeForce RTX 2080 Ti with 11 GB GPU memory (NVIDIA Corporation, Santa Clara, CA, USA). Python programming language version 3.7 was used for analysis. Results The EfficientDet-D0 model showed the highest average precision of 0.30. When the threshold to regard a prediction as correct (intersection over union) was set to 0.5, the average precision was 0.79. The RetinaNet model achieved the lowest average precision of 0.23, and the precision was 0.64 when the intersection over union was set to 0.5. The procedure to estimate mandibular cortical width showed acceptable results. Of 100 random images, the algorithm produced an output 93 times, 20 of which were not visually satisfactory. Conclusions EfficientDet-D0 effectively detected the mental foramen. Methods for estimating bone quality are important in radiology and require further development.
ISSN:0300-0605
1473-2300
1473-2300
DOI:10.1177/03000605221135147