Loading…

Projective synchronization of fractional-order delayed neural networks based on the comparison principle

This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractio...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2018-02, Vol.2018 (1), p.1-16, Article 73
Main Authors: Zhang, Weiwei, Cao, Jinde, Wu, Ranchao, Alsaedi, Ahmed, Alsaadi, Fuad E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3
cites cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3
container_end_page 16
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2018
creator Zhang, Weiwei
Cao, Jinde
Wu, Ranchao
Alsaedi, Ahmed
Alsaadi, Fuad E.
description This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.
doi_str_mv 10.1186/s13662-018-1530-1
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</doaj_id><sourcerecordid>oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEuXnAbjlBQx27CTOEVX8VKoEBzhbG3vdJqRxZaeg8vQ4FCFOnHZ2pJnVfoRccXbNuSpvIhdlmVPGFeWFYJQfkRkvVUW5ktXxH31KzmLsGMtrqdSMrJ-D79CM7TtmcT-YdfBD-wlj64fMu8wFMJOGnvpgMWQWe9ijzQbcBejTGD98eItZAzG5KTSuMTN-s4XQxrRuQzuYdtvjBTlx0Ee8_Jnn5PX-7mX-SJdPD4v57ZIaWYqRcjBGSbTW2cZUtuFW1U5hzkQhWV7WTaWEYo4pgVWtQHDTyCpHlbvaqNI5cU4Wh17rodPp_AbCXnto9bfhw0pDGFvToy6aBkSB0toiwZCgCrTCSpasHIQoUhc_dJngYwzofvs40xN2fcCuE3Y9Ydc8ZfJDJk6vrzDozu9CAhj_CX0BcFyIRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><source>Publicly Available Content Database</source><source>DOAJ (Directory of Open Access Journals)</source><creator>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</creator><creatorcontrib>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</creatorcontrib><description>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</description><identifier>ISSN: 1687-1847</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1530-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Comparison principle ; Difference and Functional Equations ; Fractional order ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Projective synchronization ; Time-delay</subject><ispartof>Advances in difference equations, 2018-02, Vol.2018 (1), p.1-16, Article 73</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</citedby><cites>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</cites><orcidid>0000-0001-5316-9721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2101,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</description><subject>Analysis</subject><subject>Comparison principle</subject><subject>Difference and Functional Equations</subject><subject>Fractional order</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Projective synchronization</subject><subject>Time-delay</subject><issn>1687-1847</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1OwzAQhC0EEuXnAbjlBQx27CTOEVX8VKoEBzhbG3vdJqRxZaeg8vQ4FCFOnHZ2pJnVfoRccXbNuSpvIhdlmVPGFeWFYJQfkRkvVUW5ktXxH31KzmLsGMtrqdSMrJ-D79CM7TtmcT-YdfBD-wlj64fMu8wFMJOGnvpgMWQWe9ijzQbcBejTGD98eItZAzG5KTSuMTN-s4XQxrRuQzuYdtvjBTlx0Ee8_Jnn5PX-7mX-SJdPD4v57ZIaWYqRcjBGSbTW2cZUtuFW1U5hzkQhWV7WTaWEYo4pgVWtQHDTyCpHlbvaqNI5cU4Wh17rodPp_AbCXnto9bfhw0pDGFvToy6aBkSB0toiwZCgCrTCSpasHIQoUhc_dJngYwzofvs40xN2fcCuE3Y9Ydc8ZfJDJk6vrzDozu9CAhj_CX0BcFyIRA</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Zhang, Weiwei</creator><creator>Cao, Jinde</creator><creator>Wu, Ranchao</creator><creator>Alsaedi, Ahmed</creator><creator>Alsaadi, Fuad E.</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5316-9721</orcidid></search><sort><creationdate>20180227</creationdate><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><author>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Comparison principle</topic><topic>Difference and Functional Equations</topic><topic>Fractional order</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Projective synchronization</topic><topic>Time-delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ (Directory of Open Access Journals)</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weiwei</au><au>Cao, Jinde</au><au>Wu, Ranchao</au><au>Alsaedi, Ahmed</au><au>Alsaadi, Fuad E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-02-27</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>73</artnum><issn>1687-1847</issn><eissn>1687-1847</eissn><abstract>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1530-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5316-9721</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2018-02, Vol.2018 (1), p.1-16, Article 73
issn 1687-1847
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335
source Publicly Available Content Database; DOAJ (Directory of Open Access Journals)
subjects Analysis
Comparison principle
Difference and Functional Equations
Fractional order
Functional Analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Projective synchronization
Time-delay
title Projective synchronization of fractional-order delayed neural networks based on the comparison principle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20fractional-order%20delayed%20neural%20networks%20based%20on%20the%20comparison%20principle&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Zhang,%20Weiwei&rft.date=2018-02-27&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=73&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1530-1&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true