Loading…
Projective synchronization of fractional-order delayed neural networks based on the comparison principle
This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractio...
Saved in:
Published in: | Advances in difference equations 2018-02, Vol.2018 (1), p.1-16, Article 73 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2018 |
creator | Zhang, Weiwei Cao, Jinde Wu, Ranchao Alsaedi, Ahmed Alsaadi, Fuad E. |
description | This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result. |
doi_str_mv | 10.1186/s13662-018-1530-1 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</doaj_id><sourcerecordid>oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEuXnAbjlBQx27CTOEVX8VKoEBzhbG3vdJqRxZaeg8vQ4FCFOnHZ2pJnVfoRccXbNuSpvIhdlmVPGFeWFYJQfkRkvVUW5ktXxH31KzmLsGMtrqdSMrJ-D79CM7TtmcT-YdfBD-wlj64fMu8wFMJOGnvpgMWQWe9ijzQbcBejTGD98eItZAzG5KTSuMTN-s4XQxrRuQzuYdtvjBTlx0Ee8_Jnn5PX-7mX-SJdPD4v57ZIaWYqRcjBGSbTW2cZUtuFW1U5hzkQhWV7WTaWEYo4pgVWtQHDTyCpHlbvaqNI5cU4Wh17rodPp_AbCXnto9bfhw0pDGFvToy6aBkSB0toiwZCgCrTCSpasHIQoUhc_dJngYwzofvs40xN2fcCuE3Y9Ydc8ZfJDJk6vrzDozu9CAhj_CX0BcFyIRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><source>Publicly Available Content Database</source><source>DOAJ (Directory of Open Access Journals)</source><creator>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</creator><creatorcontrib>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</creatorcontrib><description>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</description><identifier>ISSN: 1687-1847</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1530-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Comparison principle ; Difference and Functional Equations ; Fractional order ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Projective synchronization ; Time-delay</subject><ispartof>Advances in difference equations, 2018-02, Vol.2018 (1), p.1-16, Article 73</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</citedby><cites>FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</cites><orcidid>0000-0001-5316-9721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2101,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</description><subject>Analysis</subject><subject>Comparison principle</subject><subject>Difference and Functional Equations</subject><subject>Fractional order</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Projective synchronization</subject><subject>Time-delay</subject><issn>1687-1847</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1OwzAQhC0EEuXnAbjlBQx27CTOEVX8VKoEBzhbG3vdJqRxZaeg8vQ4FCFOnHZ2pJnVfoRccXbNuSpvIhdlmVPGFeWFYJQfkRkvVUW5ktXxH31KzmLsGMtrqdSMrJ-D79CM7TtmcT-YdfBD-wlj64fMu8wFMJOGnvpgMWQWe9ijzQbcBejTGD98eItZAzG5KTSuMTN-s4XQxrRuQzuYdtvjBTlx0Ee8_Jnn5PX-7mX-SJdPD4v57ZIaWYqRcjBGSbTW2cZUtuFW1U5hzkQhWV7WTaWEYo4pgVWtQHDTyCpHlbvaqNI5cU4Wh17rodPp_AbCXnto9bfhw0pDGFvToy6aBkSB0toiwZCgCrTCSpasHIQoUhc_dJngYwzofvs40xN2fcCuE3Y9Ydc8ZfJDJk6vrzDozu9CAhj_CX0BcFyIRA</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Zhang, Weiwei</creator><creator>Cao, Jinde</creator><creator>Wu, Ranchao</creator><creator>Alsaedi, Ahmed</creator><creator>Alsaadi, Fuad E.</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5316-9721</orcidid></search><sort><creationdate>20180227</creationdate><title>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</title><author>Zhang, Weiwei ; Cao, Jinde ; Wu, Ranchao ; Alsaedi, Ahmed ; Alsaadi, Fuad E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Comparison principle</topic><topic>Difference and Functional Equations</topic><topic>Fractional order</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Projective synchronization</topic><topic>Time-delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ (Directory of Open Access Journals)</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weiwei</au><au>Cao, Jinde</au><au>Wu, Ranchao</au><au>Alsaedi, Ahmed</au><au>Alsaadi, Fuad E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of fractional-order delayed neural networks based on the comparison principle</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-02-27</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>73</artnum><issn>1687-1847</issn><eissn>1687-1847</eissn><abstract>This paper considers projective synchronization of fractional-order delayed neural networks. Sufficient conditions for projective synchronization of master–slave systems are achieved by constructing a Lyapunov function, employing a fractional inequality and the comparison principle of linear fractional equation with delay. The corresponding numerical simulations demonstrate the feasibility of the theoretical result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1530-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5316-9721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2018-02, Vol.2018 (1), p.1-16, Article 73 |
issn | 1687-1847 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335 |
source | Publicly Available Content Database; DOAJ (Directory of Open Access Journals) |
subjects | Analysis Comparison principle Difference and Functional Equations Fractional order Functional Analysis Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Projective synchronization Time-delay |
title | Projective synchronization of fractional-order delayed neural networks based on the comparison principle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20fractional-order%20delayed%20neural%20networks%20based%20on%20the%20comparison%20principle&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Zhang,%20Weiwei&rft.date=2018-02-27&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=73&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1530-1&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_5bba35e4dd59484a85ed3d405e42a335%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-1acc84eddfdbc7db1d89f8e203540269b78380f083e798a31cb472e82f9c86ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |