Loading…

Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader

Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, w...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2022-02, Vol.11
Main Authors: Gaubitz, Christl, Liu, Xingchen, Pajak, Joshua, Stone, Nicholas P, Hayes, Janelle A, Demo, Gabriel, Kelch, Brian A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303
cites cdi_FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 11
creator Gaubitz, Christl
Liu, Xingchen
Pajak, Joshua
Stone, Nicholas P
Hayes, Janelle A
Demo, Gabriel
Kelch, Brian A
description Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
doi_str_mv 10.7554/elife.74175
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5bda05abd9904a3888a3c73d20cdb5a4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5bda05abd9904a3888a3c73d20cdb5a4</doaj_id><sourcerecordid>2645789362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303</originalsourceid><addsrcrecordid>eNpdks1rFDEYhwdRbKk9eZeAF0GmZvIxSS5C2VYtVL0oeBDCO_nYzZKZrMlMYf97024trbkkefPw5EfyNs3rDp8JztkHF4N3Z4J1gj9rjgnmuMWS_Xr-aH3UnJayxXUIJmWnXjZHlHdCMUWPm9-rvE_t5VdU5ryYecmuoOxuHES0CetNW_cpLnNIExqd2cAUyoiSR4Auvp2jXYr70WUoDpUYbJjWyEQYdygmsC6_al54iMWd3s8nzc9Plz9WX9rr75-vVufXrWG8521vPBOcEO591xs2eNF3XAnZE1WromY2drAdUdaoQVDPmGcELPReSi4opifN1cFrE2z1LocR8l4nCPqukPJaQ56DiU7zwQLmMFilMAMqpQRqBLUE1zs4sOr6eHDtlmF01rhpzhCfSJ-eTGGj1-lGS6moIKQK3t0LcvqzuDLrMRTjYoTJpaVo0lOsKO4Irejb_9BtWvJUn6pSjItq7G-F7w-UyamU7PxDmA7r2ybQ7ro2gb5rgkq_eZz_gf335fQvlrWtaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645789362</pqid></control><display><type>article</type><title>Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Gaubitz, Christl ; Liu, Xingchen ; Pajak, Joshua ; Stone, Nicholas P ; Hayes, Janelle A ; Demo, Gabriel ; Kelch, Brian A</creator><creatorcontrib>Gaubitz, Christl ; Liu, Xingchen ; Pajak, Joshua ; Stone, Nicholas P ; Hayes, Janelle A ; Demo, Gabriel ; Kelch, Brian A</creatorcontrib><description>Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.74175</identifier><identifier>PMID: 35179493</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>AAA+ ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; ATPases Associated with Diverse Cellular Activities - metabolism ; Binding sites ; Classification ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA biosynthesis ; DNA Replication ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; E coli ; Hydrolysis ; Proliferating cell nuclear antigen ; Proliferating Cell Nuclear Antigen - metabolism ; Replication factor C ; Replication Protein C - chemistry ; Replication Protein C - genetics ; Replication Protein C - metabolism ; Saccharomyces cerevisiae - genetics ; sliding clamp loader ; Structural Biology and Molecular Biophysics</subject><ispartof>eLife, 2022-02, Vol.11</ispartof><rights>2022, Gaubitz et al.</rights><rights>2022, Gaubitz et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022, Gaubitz et al 2022 Gaubitz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303</citedby><cites>FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303</cites><orcidid>0000-0001-5781-0870 ; 0000-0002-5869-0329 ; 0000-0002-9089-1761 ; 0000-0002-1369-6989 ; 0000-0002-6047-9282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2645789362/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2645789362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35179493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaubitz, Christl</creatorcontrib><creatorcontrib>Liu, Xingchen</creatorcontrib><creatorcontrib>Pajak, Joshua</creatorcontrib><creatorcontrib>Stone, Nicholas P</creatorcontrib><creatorcontrib>Hayes, Janelle A</creatorcontrib><creatorcontrib>Demo, Gabriel</creatorcontrib><creatorcontrib>Kelch, Brian A</creatorcontrib><title>Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader</title><title>eLife</title><addtitle>Elife</addtitle><description>Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.</description><subject>AAA+</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATPases Associated with Diverse Cellular Activities - metabolism</subject><subject>Binding sites</subject><subject>Classification</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Replication</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>E coli</subject><subject>Hydrolysis</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Replication factor C</subject><subject>Replication Protein C - chemistry</subject><subject>Replication Protein C - genetics</subject><subject>Replication Protein C - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>sliding clamp loader</subject><subject>Structural Biology and Molecular Biophysics</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rFDEYhwdRbKk9eZeAF0GmZvIxSS5C2VYtVL0oeBDCO_nYzZKZrMlMYf97024trbkkefPw5EfyNs3rDp8JztkHF4N3Z4J1gj9rjgnmuMWS_Xr-aH3UnJayxXUIJmWnXjZHlHdCMUWPm9-rvE_t5VdU5ryYecmuoOxuHES0CetNW_cpLnNIExqd2cAUyoiSR4Auvp2jXYr70WUoDpUYbJjWyEQYdygmsC6_al54iMWd3s8nzc9Plz9WX9rr75-vVufXrWG8521vPBOcEO591xs2eNF3XAnZE1WromY2drAdUdaoQVDPmGcELPReSi4opifN1cFrE2z1LocR8l4nCPqukPJaQ56DiU7zwQLmMFilMAMqpQRqBLUE1zs4sOr6eHDtlmF01rhpzhCfSJ-eTGGj1-lGS6moIKQK3t0LcvqzuDLrMRTjYoTJpaVo0lOsKO4Irejb_9BtWvJUn6pSjItq7G-F7w-UyamU7PxDmA7r2ybQ7ro2gb5rgkq_eZz_gf335fQvlrWtaw</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Gaubitz, Christl</creator><creator>Liu, Xingchen</creator><creator>Pajak, Joshua</creator><creator>Stone, Nicholas P</creator><creator>Hayes, Janelle A</creator><creator>Demo, Gabriel</creator><creator>Kelch, Brian A</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5781-0870</orcidid><orcidid>https://orcid.org/0000-0002-5869-0329</orcidid><orcidid>https://orcid.org/0000-0002-9089-1761</orcidid><orcidid>https://orcid.org/0000-0002-1369-6989</orcidid><orcidid>https://orcid.org/0000-0002-6047-9282</orcidid></search><sort><creationdate>20220218</creationdate><title>Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader</title><author>Gaubitz, Christl ; Liu, Xingchen ; Pajak, Joshua ; Stone, Nicholas P ; Hayes, Janelle A ; Demo, Gabriel ; Kelch, Brian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AAA+</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATPases Associated with Diverse Cellular Activities - metabolism</topic><topic>Binding sites</topic><topic>Classification</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Replication</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>E coli</topic><topic>Hydrolysis</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Replication factor C</topic><topic>Replication Protein C - chemistry</topic><topic>Replication Protein C - genetics</topic><topic>Replication Protein C - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>sliding clamp loader</topic><topic>Structural Biology and Molecular Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaubitz, Christl</creatorcontrib><creatorcontrib>Liu, Xingchen</creatorcontrib><creatorcontrib>Pajak, Joshua</creatorcontrib><creatorcontrib>Stone, Nicholas P</creatorcontrib><creatorcontrib>Hayes, Janelle A</creatorcontrib><creatorcontrib>Demo, Gabriel</creatorcontrib><creatorcontrib>Kelch, Brian A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaubitz, Christl</au><au>Liu, Xingchen</au><au>Pajak, Joshua</au><au>Stone, Nicholas P</au><au>Hayes, Janelle A</au><au>Demo, Gabriel</au><au>Kelch, Brian A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>11</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>35179493</pmid><doi>10.7554/elife.74175</doi><orcidid>https://orcid.org/0000-0001-5781-0870</orcidid><orcidid>https://orcid.org/0000-0002-5869-0329</orcidid><orcidid>https://orcid.org/0000-0002-9089-1761</orcidid><orcidid>https://orcid.org/0000-0002-1369-6989</orcidid><orcidid>https://orcid.org/0000-0002-6047-9282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2022-02, Vol.11
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5bda05abd9904a3888a3c73d20cdb5a4
source Publicly Available Content Database; PubMed
subjects AAA+
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
ATPases Associated with Diverse Cellular Activities - metabolism
Binding sites
Classification
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA biosynthesis
DNA Replication
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - metabolism
E coli
Hydrolysis
Proliferating cell nuclear antigen
Proliferating Cell Nuclear Antigen - metabolism
Replication factor C
Replication Protein C - chemistry
Replication Protein C - genetics
Replication Protein C - metabolism
Saccharomyces cerevisiae - genetics
sliding clamp loader
Structural Biology and Molecular Biophysics
title Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structures%20reveal%20high-resolution%20mechanism%20of%20a%20DNA%20polymerase%20sliding%20clamp%20loader&rft.jtitle=eLife&rft.au=Gaubitz,%20Christl&rft.date=2022-02-18&rft.volume=11&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.74175&rft_dat=%3Cproquest_doaj_%3E2645789362%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4565-6cf475225ff16c4bf76159786295227881cdbd129dc9b73f44f42ada6f8857303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645789362&rft_id=info:pmid/35179493&rfr_iscdi=true