Loading…

Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics

Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high‐precision stretchable electronics f...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-07, Vol.11 (26), p.e2309735-n/a
Main Authors: Bian, Yuhan, Shi, Haozhou, Yuan, Qunchen, Zhu, Yuxuan, Lin, Zhengzi, Zhuang, Liujing, Han, Xun, Wang, Ping, Chen, Mengxiao, Wang, Xiandi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4853-bed75cb3cb2ca4b3c72d321e06338f3ab9cd0153ebf686dc114a2d6f964586fa3
container_end_page n/a
container_issue 26
container_start_page e2309735
container_title Advanced science
container_volume 11
creator Bian, Yuhan
Shi, Haozhou
Yuan, Qunchen
Zhu, Yuxuan
Lin, Zhengzi
Zhuang, Liujing
Han, Xun
Wang, Ping
Chen, Mengxiao
Wang, Xiandi
description Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high‐precision stretchable electronics faces substantial challenges, including instability at rigid‐soft interfaces and incompatibility with traditional high‐precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field. Patterning techniques of stretchable materials plays an important role in the development of high‐precision stretchable electronics. Especially, metallized electrospun nanofibers as the conductive filler show excellent comprehensive abilities, including high stretchability, low percolation threshold, and compatibility with traditional patterning technologies. In this review, it will be introduced in detail on the relevant theoretical basis, preparation process and application prospect.
doi_str_mv 10.1002/advs.202309735
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5bf9445f18624eb2839efbc1b294ce60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5bf9445f18624eb2839efbc1b294ce60</doaj_id><sourcerecordid>3077705905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4853-bed75cb3cb2ca4b3c72d321e06338f3ab9cd0153ebf686dc114a2d6f964586fa3</originalsourceid><addsrcrecordid>eNqFkklvEzEUgEcIRKvQK0c0EhcuCd5mxnNCoZRSqSxSC1fLy3PiyLFTeyao_Po6pI1aLpyel8-f_Jaqeo3RDCNE3kuzzTOCCEV9R5tn1THBPZ9SztjzR-uj6iTnFUIIN7RjmL-sjihveccZPq7ghxwGSMGFRX0NehnczQi5_igzmDqG-isM0nv3p-zOPOghxbwZQ_1NhmidgpRrG1M9N1sZdGGuhgSDXkrl4YEPTudX1QsrfYaT-zipfn4-uz79Mr38fn5xOr-casYbOlVgukYrqhXRkpXYEUMJBtRSyi2VqtdmlwUo2_LWaIyZJKa1fcsa3lpJJ9XF3muiXIlNcmuZbkWUTvw9iGkhZBqc9iAaZXvGGot5SxgowmkPVmmsSM80tKi4Puxdm1GtwWgIQ5L-ifTpTXBLsYhbgTGhjOG-GN7dG1LcVXUQa5c1eC8DxDELiljf4Q4VflK9_QddxTGFUqtCdV2Hmh41hZrtKV3akBPYw28wEruJELuJEIeJKA_ePM7hgD_0vwBsD_x2Hm7_oxPzT7-uOKKU3gHC1MNT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077705905</pqid></control><display><type>article</type><title>Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics</title><source>Wiley Online Library</source><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Bian, Yuhan ; Shi, Haozhou ; Yuan, Qunchen ; Zhu, Yuxuan ; Lin, Zhengzi ; Zhuang, Liujing ; Han, Xun ; Wang, Ping ; Chen, Mengxiao ; Wang, Xiandi</creator><creatorcontrib>Bian, Yuhan ; Shi, Haozhou ; Yuan, Qunchen ; Zhu, Yuxuan ; Lin, Zhengzi ; Zhuang, Liujing ; Han, Xun ; Wang, Ping ; Chen, Mengxiao ; Wang, Xiandi</creatorcontrib><description>Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high‐precision stretchable electronics faces substantial challenges, including instability at rigid‐soft interfaces and incompatibility with traditional high‐precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field. Patterning techniques of stretchable materials plays an important role in the development of high‐precision stretchable electronics. Especially, metallized electrospun nanofibers as the conductive filler show excellent comprehensive abilities, including high stretchability, low percolation threshold, and compatibility with traditional patterning technologies. In this review, it will be introduced in detail on the relevant theoretical basis, preparation process and application prospect.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202309735</identifier><identifier>PMID: 38687841</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Copyright ; Electronics ; electrospun nanofiber ; Mechanical properties ; metalized nanofibers ; Optimization techniques ; patterning techniques ; Permeability ; Polymers ; Review ; stretchable electronics</subject><ispartof>Advanced science, 2024-07, Vol.11 (26), p.e2309735-n/a</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4853-bed75cb3cb2ca4b3c72d321e06338f3ab9cd0153ebf686dc114a2d6f964586fa3</cites><orcidid>0000-0001-5853-4791 ; 0000-0003-2214-2096 ; 0000-0001-6474-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3077705905/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3077705905?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38687841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Yuhan</creatorcontrib><creatorcontrib>Shi, Haozhou</creatorcontrib><creatorcontrib>Yuan, Qunchen</creatorcontrib><creatorcontrib>Zhu, Yuxuan</creatorcontrib><creatorcontrib>Lin, Zhengzi</creatorcontrib><creatorcontrib>Zhuang, Liujing</creatorcontrib><creatorcontrib>Han, Xun</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Chen, Mengxiao</creatorcontrib><creatorcontrib>Wang, Xiandi</creatorcontrib><title>Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high‐precision stretchable electronics faces substantial challenges, including instability at rigid‐soft interfaces and incompatibility with traditional high‐precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field. Patterning techniques of stretchable materials plays an important role in the development of high‐precision stretchable electronics. Especially, metallized electrospun nanofibers as the conductive filler show excellent comprehensive abilities, including high stretchability, low percolation threshold, and compatibility with traditional patterning technologies. In this review, it will be introduced in detail on the relevant theoretical basis, preparation process and application prospect.</description><subject>Copyright</subject><subject>Electronics</subject><subject>electrospun nanofiber</subject><subject>Mechanical properties</subject><subject>metalized nanofibers</subject><subject>Optimization techniques</subject><subject>patterning techniques</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Review</subject><subject>stretchable electronics</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkklvEzEUgEcIRKvQK0c0EhcuCd5mxnNCoZRSqSxSC1fLy3PiyLFTeyao_Po6pI1aLpyel8-f_Jaqeo3RDCNE3kuzzTOCCEV9R5tn1THBPZ9SztjzR-uj6iTnFUIIN7RjmL-sjihveccZPq7ghxwGSMGFRX0NehnczQi5_igzmDqG-isM0nv3p-zOPOghxbwZQ_1NhmidgpRrG1M9N1sZdGGuhgSDXkrl4YEPTudX1QsrfYaT-zipfn4-uz79Mr38fn5xOr-casYbOlVgukYrqhXRkpXYEUMJBtRSyi2VqtdmlwUo2_LWaIyZJKa1fcsa3lpJJ9XF3muiXIlNcmuZbkWUTvw9iGkhZBqc9iAaZXvGGot5SxgowmkPVmmsSM80tKi4Puxdm1GtwWgIQ5L-ifTpTXBLsYhbgTGhjOG-GN7dG1LcVXUQa5c1eC8DxDELiljf4Q4VflK9_QddxTGFUqtCdV2Hmh41hZrtKV3akBPYw28wEruJELuJEIeJKA_ePM7hgD_0vwBsD_x2Hm7_oxPzT7-uOKKU3gHC1MNT</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bian, Yuhan</creator><creator>Shi, Haozhou</creator><creator>Yuan, Qunchen</creator><creator>Zhu, Yuxuan</creator><creator>Lin, Zhengzi</creator><creator>Zhuang, Liujing</creator><creator>Han, Xun</creator><creator>Wang, Ping</creator><creator>Chen, Mengxiao</creator><creator>Wang, Xiandi</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5853-4791</orcidid><orcidid>https://orcid.org/0000-0003-2214-2096</orcidid><orcidid>https://orcid.org/0000-0001-6474-2722</orcidid></search><sort><creationdate>20240701</creationdate><title>Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics</title><author>Bian, Yuhan ; Shi, Haozhou ; Yuan, Qunchen ; Zhu, Yuxuan ; Lin, Zhengzi ; Zhuang, Liujing ; Han, Xun ; Wang, Ping ; Chen, Mengxiao ; Wang, Xiandi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4853-bed75cb3cb2ca4b3c72d321e06338f3ab9cd0153ebf686dc114a2d6f964586fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Copyright</topic><topic>Electronics</topic><topic>electrospun nanofiber</topic><topic>Mechanical properties</topic><topic>metalized nanofibers</topic><topic>Optimization techniques</topic><topic>patterning techniques</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Review</topic><topic>stretchable electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Yuhan</creatorcontrib><creatorcontrib>Shi, Haozhou</creatorcontrib><creatorcontrib>Yuan, Qunchen</creatorcontrib><creatorcontrib>Zhu, Yuxuan</creatorcontrib><creatorcontrib>Lin, Zhengzi</creatorcontrib><creatorcontrib>Zhuang, Liujing</creatorcontrib><creatorcontrib>Han, Xun</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Chen, Mengxiao</creatorcontrib><creatorcontrib>Wang, Xiandi</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Yuhan</au><au>Shi, Haozhou</au><au>Yuan, Qunchen</au><au>Zhu, Yuxuan</au><au>Lin, Zhengzi</au><au>Zhuang, Liujing</au><au>Han, Xun</au><au>Wang, Ping</au><au>Chen, Mengxiao</au><au>Wang, Xiandi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>26</issue><spage>e2309735</spage><epage>n/a</epage><pages>e2309735-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high‐precision stretchable electronics faces substantial challenges, including instability at rigid‐soft interfaces and incompatibility with traditional high‐precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field. Patterning techniques of stretchable materials plays an important role in the development of high‐precision stretchable electronics. Especially, metallized electrospun nanofibers as the conductive filler show excellent comprehensive abilities, including high stretchability, low percolation threshold, and compatibility with traditional patterning technologies. In this review, it will be introduced in detail on the relevant theoretical basis, preparation process and application prospect.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38687841</pmid><doi>10.1002/advs.202309735</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5853-4791</orcidid><orcidid>https://orcid.org/0000-0003-2214-2096</orcidid><orcidid>https://orcid.org/0000-0001-6474-2722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-07, Vol.11 (26), p.e2309735-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5bf9445f18624eb2839efbc1b294ce60
source Wiley Online Library; ProQuest - Publicly Available Content Database; PubMed Central
subjects Copyright
Electronics
electrospun nanofiber
Mechanical properties
metalized nanofibers
Optimization techniques
patterning techniques
Permeability
Polymers
Review
stretchable electronics
title Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterning%20Techniques%20Based%20on%20Metallized%20Electrospun%20Nanofibers%20for%20Advanced%20Stretchable%20Electronics&rft.jtitle=Advanced%20science&rft.au=Bian,%20Yuhan&rft.date=2024-07-01&rft.volume=11&rft.issue=26&rft.spage=e2309735&rft.epage=n/a&rft.pages=e2309735-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202309735&rft_dat=%3Cproquest_doaj_%3E3077705905%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4853-bed75cb3cb2ca4b3c72d321e06338f3ab9cd0153ebf686dc114a2d6f964586fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077705905&rft_id=info:pmid/38687841&rfr_iscdi=true