Loading…
Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4
Nowadays, Wireless Mesh Networks (WMNs) are widely deployed in communication areas due to their ease of implementation, dynamic self-organization, and cost-effectiveness. The design of routing protocols is critical for ensuring the performance and reliability of WMNs. Although there have been numero...
Saved in:
Published in: | Telecom (Basel) 2024-10, Vol.5 (4), p.1008-1020 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1731-1b1ba0d83929a268ac03c6c588249c31081725b3c738aa0451ba5810c87ccfea3 |
container_end_page | 1020 |
container_issue | 4 |
container_start_page | 1008 |
container_title | Telecom (Basel) |
container_volume | 5 |
creator | Turlykozhayeva, Dana Temesheva, Symbat Ussipov, Nurzhan Bolysbay, Aslan Akhmetali, Almat Akhtanov, Sayat Tang, Xiao |
description | Nowadays, Wireless Mesh Networks (WMNs) are widely deployed in communication areas due to their ease of implementation, dynamic self-organization, and cost-effectiveness. The design of routing protocols is critical for ensuring the performance and reliability of WMNs. Although there have been numerous experimental works on WMNs in the past decade, only a few of them have been tested in real-world scenarios. This article presents a comparative analysis of three proactive routing protocols, OLSR, BATMAN, and Babel, using Raspberry Pi 4 devices. The evaluation, conducted at Al-Farabi Kazakh National University, covers both indoor and outdoor scenarios, focusing on key metrics such as bandwidth, Packet Delivery Ratio (PDR), and jitter. In outdoor scenarios, OLSR achieved the highest bandwidth at 2.9 Mbps, while BATMAN and Babel lagged. Indoor tests revealed that Babel initially outperformed with the highest bandwidth of 57.19 Mb/s but suffered from scalability issues, while BATMAN and OLSR exhibited significant declines in performance as network size increased. For PDR, BATMAN performed best with a decline from 100% to 42.8%, followed by OLSR with a moderate drop, and Babel with the greatest decrease. For jitter, OLSR showed the most stable performance, increasing from 0.281 ms to 2.58 ms at eleven nodes, BATMAN exhibited moderate increases, and Babel experienced the highest rise. |
doi_str_mv | 10.3390/telecom5040051 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c09167bb4634f03b8f23d6ab7dabb6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c09167bb4634f03b8f23d6ab7dabb6b</doaj_id><sourcerecordid>3149762397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1731-1b1ba0d83929a268ac03c6c588249c31081725b3c738aa0451ba5810c87ccfea3</originalsourceid><addsrcrecordid>eNpVkc1Lw0AQxYMoWGqvnhc8p-5XspujlKqFqkUsHpfZzaZuTbNxN1X735taET3NzOPHmxlekpwTPGaswJedra3xmwxzjDNylAxoLljaD-T4T3-ajGJcY4ypKHgm6SBpp5-tDW5jmw5qtLCh8mEDjbFo4jctBBd9g3yFFsGD6dy7RY9-27lmtVc6b3wdkWvQswv9ATGiOxtf0L3tPnx4Rcu4Bx8httqGsEMLh_hZclJBHe3opw6T5fX0aXKbzh9uZpOreWqIYCQlmmjApWQFLYDmEgxmJjeZlJQXhhEsiaCZZkYwCYB51uOZJNhIYUxlgQ2T2cG39LBWbf8ihJ3y4NS34MNKQeicqa3KDC5ILrTmOeMVZlpWlJU5aFGC1rnuvS4OXm3wb1sbO7X229D05ytGeCFyygrRU-MDZYKPMdjqdyvBah-S-h8S-wI65oZE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149762397</pqid></control><display><type>article</type><title>Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4</title><source>Publicly Available Content Database</source><creator>Turlykozhayeva, Dana ; Temesheva, Symbat ; Ussipov, Nurzhan ; Bolysbay, Aslan ; Akhmetali, Almat ; Akhtanov, Sayat ; Tang, Xiao</creator><creatorcontrib>Turlykozhayeva, Dana ; Temesheva, Symbat ; Ussipov, Nurzhan ; Bolysbay, Aslan ; Akhmetali, Almat ; Akhtanov, Sayat ; Tang, Xiao</creatorcontrib><description>Nowadays, Wireless Mesh Networks (WMNs) are widely deployed in communication areas due to their ease of implementation, dynamic self-organization, and cost-effectiveness. The design of routing protocols is critical for ensuring the performance and reliability of WMNs. Although there have been numerous experimental works on WMNs in the past decade, only a few of them have been tested in real-world scenarios. This article presents a comparative analysis of three proactive routing protocols, OLSR, BATMAN, and Babel, using Raspberry Pi 4 devices. The evaluation, conducted at Al-Farabi Kazakh National University, covers both indoor and outdoor scenarios, focusing on key metrics such as bandwidth, Packet Delivery Ratio (PDR), and jitter. In outdoor scenarios, OLSR achieved the highest bandwidth at 2.9 Mbps, while BATMAN and Babel lagged. Indoor tests revealed that Babel initially outperformed with the highest bandwidth of 57.19 Mb/s but suffered from scalability issues, while BATMAN and OLSR exhibited significant declines in performance as network size increased. For PDR, BATMAN performed best with a decline from 100% to 42.8%, followed by OLSR with a moderate drop, and Babel with the greatest decrease. For jitter, OLSR showed the most stable performance, increasing from 0.281 ms to 2.58 ms at eleven nodes, BATMAN exhibited moderate increases, and Babel experienced the highest rise.</description><identifier>ISSN: 2673-4001</identifier><identifier>EISSN: 2673-4001</identifier><identifier>DOI: 10.3390/telecom5040051</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Babel ; Bandwidths ; BATMAN ; Communication ; Cost effectiveness ; Neighborhoods ; OLSR ; Performance evaluation ; proactive routing protocols ; Protocol ; Raspberry Pi 4 ; Routing (telecommunications) ; Vibration ; Wireless networks ; WMN</subject><ispartof>Telecom (Basel), 2024-10, Vol.5 (4), p.1008-1020</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1731-1b1ba0d83929a268ac03c6c588249c31081725b3c738aa0451ba5810c87ccfea3</cites><orcidid>0000-0001-8971-5413 ; 0000-0002-9705-8000 ; 0000-0002-2512-3280 ; 0009-0007-5171-8767 ; 0009-0005-7254-524X ; 0009-0000-2795-9586 ; 0000-0002-7326-9196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149762397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149762397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Turlykozhayeva, Dana</creatorcontrib><creatorcontrib>Temesheva, Symbat</creatorcontrib><creatorcontrib>Ussipov, Nurzhan</creatorcontrib><creatorcontrib>Bolysbay, Aslan</creatorcontrib><creatorcontrib>Akhmetali, Almat</creatorcontrib><creatorcontrib>Akhtanov, Sayat</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><title>Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4</title><title>Telecom (Basel)</title><description>Nowadays, Wireless Mesh Networks (WMNs) are widely deployed in communication areas due to their ease of implementation, dynamic self-organization, and cost-effectiveness. The design of routing protocols is critical for ensuring the performance and reliability of WMNs. Although there have been numerous experimental works on WMNs in the past decade, only a few of them have been tested in real-world scenarios. This article presents a comparative analysis of three proactive routing protocols, OLSR, BATMAN, and Babel, using Raspberry Pi 4 devices. The evaluation, conducted at Al-Farabi Kazakh National University, covers both indoor and outdoor scenarios, focusing on key metrics such as bandwidth, Packet Delivery Ratio (PDR), and jitter. In outdoor scenarios, OLSR achieved the highest bandwidth at 2.9 Mbps, while BATMAN and Babel lagged. Indoor tests revealed that Babel initially outperformed with the highest bandwidth of 57.19 Mb/s but suffered from scalability issues, while BATMAN and OLSR exhibited significant declines in performance as network size increased. For PDR, BATMAN performed best with a decline from 100% to 42.8%, followed by OLSR with a moderate drop, and Babel with the greatest decrease. For jitter, OLSR showed the most stable performance, increasing from 0.281 ms to 2.58 ms at eleven nodes, BATMAN exhibited moderate increases, and Babel experienced the highest rise.</description><subject>Algorithms</subject><subject>Babel</subject><subject>Bandwidths</subject><subject>BATMAN</subject><subject>Communication</subject><subject>Cost effectiveness</subject><subject>Neighborhoods</subject><subject>OLSR</subject><subject>Performance evaluation</subject><subject>proactive routing protocols</subject><subject>Protocol</subject><subject>Raspberry Pi 4</subject><subject>Routing (telecommunications)</subject><subject>Vibration</subject><subject>Wireless networks</subject><subject>WMN</subject><issn>2673-4001</issn><issn>2673-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1Lw0AQxYMoWGqvnhc8p-5XspujlKqFqkUsHpfZzaZuTbNxN1X735taET3NzOPHmxlekpwTPGaswJedra3xmwxzjDNylAxoLljaD-T4T3-ajGJcY4ypKHgm6SBpp5-tDW5jmw5qtLCh8mEDjbFo4jctBBd9g3yFFsGD6dy7RY9-27lmtVc6b3wdkWvQswv9ATGiOxtf0L3tPnx4Rcu4Bx8httqGsEMLh_hZclJBHe3opw6T5fX0aXKbzh9uZpOreWqIYCQlmmjApWQFLYDmEgxmJjeZlJQXhhEsiaCZZkYwCYB51uOZJNhIYUxlgQ2T2cG39LBWbf8ihJ3y4NS34MNKQeicqa3KDC5ILrTmOeMVZlpWlJU5aFGC1rnuvS4OXm3wb1sbO7X229D05ytGeCFyygrRU-MDZYKPMdjqdyvBah-S-h8S-wI65oZE</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Turlykozhayeva, Dana</creator><creator>Temesheva, Symbat</creator><creator>Ussipov, Nurzhan</creator><creator>Bolysbay, Aslan</creator><creator>Akhmetali, Almat</creator><creator>Akhtanov, Sayat</creator><creator>Tang, Xiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8971-5413</orcidid><orcidid>https://orcid.org/0000-0002-9705-8000</orcidid><orcidid>https://orcid.org/0000-0002-2512-3280</orcidid><orcidid>https://orcid.org/0009-0007-5171-8767</orcidid><orcidid>https://orcid.org/0009-0005-7254-524X</orcidid><orcidid>https://orcid.org/0009-0000-2795-9586</orcidid><orcidid>https://orcid.org/0000-0002-7326-9196</orcidid></search><sort><creationdate>20241010</creationdate><title>Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4</title><author>Turlykozhayeva, Dana ; Temesheva, Symbat ; Ussipov, Nurzhan ; Bolysbay, Aslan ; Akhmetali, Almat ; Akhtanov, Sayat ; Tang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1731-1b1ba0d83929a268ac03c6c588249c31081725b3c738aa0451ba5810c87ccfea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Babel</topic><topic>Bandwidths</topic><topic>BATMAN</topic><topic>Communication</topic><topic>Cost effectiveness</topic><topic>Neighborhoods</topic><topic>OLSR</topic><topic>Performance evaluation</topic><topic>proactive routing protocols</topic><topic>Protocol</topic><topic>Raspberry Pi 4</topic><topic>Routing (telecommunications)</topic><topic>Vibration</topic><topic>Wireless networks</topic><topic>WMN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turlykozhayeva, Dana</creatorcontrib><creatorcontrib>Temesheva, Symbat</creatorcontrib><creatorcontrib>Ussipov, Nurzhan</creatorcontrib><creatorcontrib>Bolysbay, Aslan</creatorcontrib><creatorcontrib>Akhmetali, Almat</creatorcontrib><creatorcontrib>Akhtanov, Sayat</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Telecom (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turlykozhayeva, Dana</au><au>Temesheva, Symbat</au><au>Ussipov, Nurzhan</au><au>Bolysbay, Aslan</au><au>Akhmetali, Almat</au><au>Akhtanov, Sayat</au><au>Tang, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4</atitle><jtitle>Telecom (Basel)</jtitle><date>2024-10-10</date><risdate>2024</risdate><volume>5</volume><issue>4</issue><spage>1008</spage><epage>1020</epage><pages>1008-1020</pages><issn>2673-4001</issn><eissn>2673-4001</eissn><abstract>Nowadays, Wireless Mesh Networks (WMNs) are widely deployed in communication areas due to their ease of implementation, dynamic self-organization, and cost-effectiveness. The design of routing protocols is critical for ensuring the performance and reliability of WMNs. Although there have been numerous experimental works on WMNs in the past decade, only a few of them have been tested in real-world scenarios. This article presents a comparative analysis of three proactive routing protocols, OLSR, BATMAN, and Babel, using Raspberry Pi 4 devices. The evaluation, conducted at Al-Farabi Kazakh National University, covers both indoor and outdoor scenarios, focusing on key metrics such as bandwidth, Packet Delivery Ratio (PDR), and jitter. In outdoor scenarios, OLSR achieved the highest bandwidth at 2.9 Mbps, while BATMAN and Babel lagged. Indoor tests revealed that Babel initially outperformed with the highest bandwidth of 57.19 Mb/s but suffered from scalability issues, while BATMAN and OLSR exhibited significant declines in performance as network size increased. For PDR, BATMAN performed best with a decline from 100% to 42.8%, followed by OLSR with a moderate drop, and Babel with the greatest decrease. For jitter, OLSR showed the most stable performance, increasing from 0.281 ms to 2.58 ms at eleven nodes, BATMAN exhibited moderate increases, and Babel experienced the highest rise.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/telecom5040051</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8971-5413</orcidid><orcidid>https://orcid.org/0000-0002-9705-8000</orcidid><orcidid>https://orcid.org/0000-0002-2512-3280</orcidid><orcidid>https://orcid.org/0009-0007-5171-8767</orcidid><orcidid>https://orcid.org/0009-0005-7254-524X</orcidid><orcidid>https://orcid.org/0009-0000-2795-9586</orcidid><orcidid>https://orcid.org/0000-0002-7326-9196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-4001 |
ispartof | Telecom (Basel), 2024-10, Vol.5 (4), p.1008-1020 |
issn | 2673-4001 2673-4001 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c09167bb4634f03b8f23d6ab7dabb6b |
source | Publicly Available Content Database |
subjects | Algorithms Babel Bandwidths BATMAN Communication Cost effectiveness Neighborhoods OLSR Performance evaluation proactive routing protocols Protocol Raspberry Pi 4 Routing (telecommunications) Vibration Wireless networks WMN |
title | Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Performance%20Comparison%20of%20Proactive%20Routing%20Protocols%20in%20Wireless%20Mesh%20Network%20Using%20Raspberry%20Pi%204&rft.jtitle=Telecom%20(Basel)&rft.au=Turlykozhayeva,%20Dana&rft.date=2024-10-10&rft.volume=5&rft.issue=4&rft.spage=1008&rft.epage=1020&rft.pages=1008-1020&rft.issn=2673-4001&rft.eissn=2673-4001&rft_id=info:doi/10.3390/telecom5040051&rft_dat=%3Cproquest_doaj_%3E3149762397%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1731-1b1ba0d83929a268ac03c6c588249c31081725b3c738aa0451ba5810c87ccfea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149762397&rft_id=info:pmid/&rfr_iscdi=true |