Loading…

TEM Observation of the Dislocations Nucleated from Cracks inside Lightly or Heavily Doped Czochralski Silicon Wafers

The crack propagation from the indent introduced with a Vickers hardness tester at room temperature and the dislocation nucleation from the cracks at 900°C inside lightly boron (B), heavily B, or heavily arsenic (As) doped Czochralski (CZ) Si wafers were investigated with transmission electron micro...

Full description

Saved in:
Bibliographic Details
Published in:Advances in condensed matter physics 2011-01, Vol.2011 (2011), p.1-6
Main Authors: Shiba, Seiji, Sueoka, Koji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The crack propagation from the indent introduced with a Vickers hardness tester at room temperature and the dislocation nucleation from the cracks at 900°C inside lightly boron (B), heavily B, or heavily arsenic (As) doped Czochralski (CZ) Si wafers were investigated with transmission electron microscopy (TEM) observations. It was found that the dopant concentration and the dopant type did not significantly affect the crack propagation and the dislocation nucleation. The slip dislocations with a density of about (0.8∼2.8) × 1013/cm3 were nucleated from the cracks propagated about 10 μm in depth. Furthermore, small dislocations that nucleated with very high density and without cracks were found around the indent introduced at 1000°C.
ISSN:1687-8108
1687-8124
DOI:10.1155/2011/541318