Loading…

Relations among Sums of Reciprocal Powers-Part II

Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used t...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Mathematics and Mathematical Sciences 2008-01, Vol.2008 (1), p.391-410
Main Author: Jose Maria Amigo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3
container_end_page 410
container_issue 1
container_start_page 391
container_title International Journal of Mathematics and Mathematical Sciences
container_volume 2008
creator Jose Maria Amigo
description Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.
doi_str_mv 10.1155/2008/421478
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161024001_200812_201610260002_201610260002_391_410</airiti_id><doaj_id>oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7</doaj_id><sourcerecordid>2293096581</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</originalsourceid><addsrcrecordid>eNqFkU1PIzEMhiO0SHQLJ_7AaI-LBux8TDxHhBaoVImKj3OUZhJI1TZs0grx75kyCCQunCxbj_3arxk7RjhFVOqMA9CZ5Cg17bERNqRrkFz9YiPABmvUyA_Y71IWAEicqxHDW7-0m5jWpbKrtH6s7rarUqVQ3XoXn3NydlnN0ovPpZ7ZvKkmk0O2H-yy-KOPOGYPl__uL67r6c3V5OJ8WluugeoQqJu7oLyzDlXn2kCyFQqU89JDp0VDCB3x0LXgtJ4LEF4SCU3UKamDGLPJMLdLdmGec1zZ_GqSjea9kPKj6ReKbumNcv3FLXnUQsqA1gaFnOYkG80b32uN2Z9hVn_R_60vG7NI27zu1zekNAoJgnroZIBcTqVkHz5FEczOXrOz1wz29vTfgX6K686-xB_g6QDbmOMmfqnP-O4xwGX_kPcO5Oaj1ADAt0S0aCSCeAOPiIpV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857134038</pqid></control><display><type>article</type><title>Relations among Sums of Reciprocal Powers-Part II</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Jose Maria Amigo</creator><contributor>Haukkanen, Pentti</contributor><creatorcontrib>Jose Maria Amigo ; Haukkanen, Pentti</creatorcontrib><description>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2008/421478</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><ispartof>International Journal of Mathematics and Mathematical Sciences, 2008-01, Vol.2008 (1), p.391-410</ispartof><rights>Copyright © 2008</rights><rights>Copyright © 2008 José María Amigó et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/857134038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/857134038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Haukkanen, Pentti</contributor><creatorcontrib>Jose Maria Amigo</creatorcontrib><title>Relations among Sums of Reciprocal Powers-Part II</title><title>International Journal of Mathematics and Mathematical Sciences</title><description>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1PIzEMhiO0SHQLJ_7AaI-LBux8TDxHhBaoVImKj3OUZhJI1TZs0grx75kyCCQunCxbj_3arxk7RjhFVOqMA9CZ5Cg17bERNqRrkFz9YiPABmvUyA_Y71IWAEicqxHDW7-0m5jWpbKrtH6s7rarUqVQ3XoXn3NydlnN0ovPpZ7ZvKkmk0O2H-yy-KOPOGYPl__uL67r6c3V5OJ8WluugeoQqJu7oLyzDlXn2kCyFQqU89JDp0VDCB3x0LXgtJ4LEF4SCU3UKamDGLPJMLdLdmGec1zZ_GqSjea9kPKj6ReKbumNcv3FLXnUQsqA1gaFnOYkG80b32uN2Z9hVn_R_60vG7NI27zu1zekNAoJgnroZIBcTqVkHz5FEczOXrOz1wz29vTfgX6K686-xB_g6QDbmOMmfqnP-O4xwGX_kPcO5Oaj1ADAt0S0aCSCeAOPiIpV</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Jose Maria Amigo</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20080101</creationdate><title>Relations among Sums of Reciprocal Powers-Part II</title><author>Jose Maria Amigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose Maria Amigo</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose Maria Amigo</au><au>Haukkanen, Pentti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relations among Sums of Reciprocal Powers-Part II</atitle><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><spage>391</spage><epage>410</epage><pages>391-410</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2008/421478</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International Journal of Mathematics and Mathematical Sciences, 2008-01, Vol.2008 (1), p.391-410
issn 0161-1712
1687-0425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7
source Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess)
title Relations among Sums of Reciprocal Powers-Part II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relations%20among%20Sums%20of%20Reciprocal%20Powers-Part%20II&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Mathematical%20Sciences&rft.au=Jose%20Maria%20Amigo&rft.date=2008-01-01&rft.volume=2008&rft.issue=1&rft.spage=391&rft.epage=410&rft.pages=391-410&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2008/421478&rft_dat=%3Cproquest_doaj_%3E2293096581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857134038&rft_id=info:pmid/&rft_airiti_id=P20161024001_200812_201610260002_201610260002_391_410&rfr_iscdi=true