Loading…
Relations among Sums of Reciprocal Powers-Part II
Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used t...
Saved in:
Published in: | International Journal of Mathematics and Mathematical Sciences 2008-01, Vol.2008 (1), p.391-410 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3 |
container_end_page | 410 |
container_issue | 1 |
container_start_page | 391 |
container_title | International Journal of Mathematics and Mathematical Sciences |
container_volume | 2008 |
creator | Jose Maria Amigo |
description | Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers. |
doi_str_mv | 10.1155/2008/421478 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161024001_200812_201610260002_201610260002_391_410</airiti_id><doaj_id>oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7</doaj_id><sourcerecordid>2293096581</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</originalsourceid><addsrcrecordid>eNqFkU1PIzEMhiO0SHQLJ_7AaI-LBux8TDxHhBaoVImKj3OUZhJI1TZs0grx75kyCCQunCxbj_3arxk7RjhFVOqMA9CZ5Cg17bERNqRrkFz9YiPABmvUyA_Y71IWAEicqxHDW7-0m5jWpbKrtH6s7rarUqVQ3XoXn3NydlnN0ovPpZ7ZvKkmk0O2H-yy-KOPOGYPl__uL67r6c3V5OJ8WluugeoQqJu7oLyzDlXn2kCyFQqU89JDp0VDCB3x0LXgtJ4LEF4SCU3UKamDGLPJMLdLdmGec1zZ_GqSjea9kPKj6ReKbumNcv3FLXnUQsqA1gaFnOYkG80b32uN2Z9hVn_R_60vG7NI27zu1zekNAoJgnroZIBcTqVkHz5FEczOXrOz1wz29vTfgX6K686-xB_g6QDbmOMmfqnP-O4xwGX_kPcO5Oaj1ADAt0S0aCSCeAOPiIpV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857134038</pqid></control><display><type>article</type><title>Relations among Sums of Reciprocal Powers-Part II</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Jose Maria Amigo</creator><contributor>Haukkanen, Pentti</contributor><creatorcontrib>Jose Maria Amigo ; Haukkanen, Pentti</creatorcontrib><description>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2008/421478</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><ispartof>International Journal of Mathematics and Mathematical Sciences, 2008-01, Vol.2008 (1), p.391-410</ispartof><rights>Copyright © 2008</rights><rights>Copyright © 2008 José María Amigó et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/857134038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/857134038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Haukkanen, Pentti</contributor><creatorcontrib>Jose Maria Amigo</creatorcontrib><title>Relations among Sums of Reciprocal Powers-Part II</title><title>International Journal of Mathematics and Mathematical Sciences</title><description>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1PIzEMhiO0SHQLJ_7AaI-LBux8TDxHhBaoVImKj3OUZhJI1TZs0grx75kyCCQunCxbj_3arxk7RjhFVOqMA9CZ5Cg17bERNqRrkFz9YiPABmvUyA_Y71IWAEicqxHDW7-0m5jWpbKrtH6s7rarUqVQ3XoXn3NydlnN0ovPpZ7ZvKkmk0O2H-yy-KOPOGYPl__uL67r6c3V5OJ8WluugeoQqJu7oLyzDlXn2kCyFQqU89JDp0VDCB3x0LXgtJ4LEF4SCU3UKamDGLPJMLdLdmGec1zZ_GqSjea9kPKj6ReKbumNcv3FLXnUQsqA1gaFnOYkG80b32uN2Z9hVn_R_60vG7NI27zu1zekNAoJgnroZIBcTqVkHz5FEczOXrOz1wz29vTfgX6K686-xB_g6QDbmOMmfqnP-O4xwGX_kPcO5Oaj1ADAt0S0aCSCeAOPiIpV</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Jose Maria Amigo</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20080101</creationdate><title>Relations among Sums of Reciprocal Powers-Part II</title><author>Jose Maria Amigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose Maria Amigo</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose Maria Amigo</au><au>Haukkanen, Pentti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relations among Sums of Reciprocal Powers-Part II</atitle><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><spage>391</spage><epage>410</epage><pages>391-410</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>Some formulas relating the classical sums of reciprocal powers are derived in a compact way by using generating functions. These relations can be conveniently written by means of certain numbers which satisfy simple summation formulas. The properties of the generating functions can be further used to easily calculate several series involving the classical sums of reciprocal powers.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2008/421478</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-1712 |
ispartof | International Journal of Mathematics and Mathematical Sciences, 2008-01, Vol.2008 (1), p.391-410 |
issn | 0161-1712 1687-0425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c14798e17344f1aaf5128b846726ed7 |
source | Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess) |
title | Relations among Sums of Reciprocal Powers-Part II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relations%20among%20Sums%20of%20Reciprocal%20Powers-Part%20II&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Mathematical%20Sciences&rft.au=Jose%20Maria%20Amigo&rft.date=2008-01-01&rft.volume=2008&rft.issue=1&rft.spage=391&rft.epage=410&rft.pages=391-410&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2008/421478&rft_dat=%3Cproquest_doaj_%3E2293096581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2708-ff8dbcf5ecac15dc9f8493505ce4e0d736810d82fd90c77b303e4883788d547f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857134038&rft_id=info:pmid/&rft_airiti_id=P20161024001_200812_201610260002_201610260002_391_410&rfr_iscdi=true |