Loading…
Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline
A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine...
Saved in:
Published in: | Reviews in cardiovascular medicine 2023-10, Vol.24 (10), p.296 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3 |
---|---|
cites | |
container_end_page | |
container_issue | 10 |
container_start_page | 296 |
container_title | Reviews in cardiovascular medicine |
container_volume | 24 |
creator | Zheng, Yi Chen, Ziliang Huang, Shan Zhang, Nan Wang, Yueying Hong, Shenda Chan, Jeffrey Shi Kai Chen, Kang-Yin Xia, Yunlong Zhang, Yuhui Lip, Gregory Y H Qin, Juan Tse, Gary Liu, Tong |
description | A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future. |
doi_str_mv | 10.31083/j.rcm2410296 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863</doaj_id><sourcerecordid>3086064475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EoqVw5Ipy5JLW9tiOwwWhpdCVtvQCZ8t2JlmvEnuxs6D-e0K3lPY0o5k334zmEfKW0XNgVMPF7jz7iQtGeauekVMmgdZKSvr8UX5CXpWyoxS41PCSnEBLm0Y26pRcX1u_DRGrDdocQxyqEKuVzV1I9U30aUzD7YfqG_6u1rGEYTuXqs9pqmysLifMw9-Jz6H4sB8XymvyordjwTf38Yz8-HL5fXVVb26-rlefNrUXUsw1euV0B8BYC8rrzi1lCRob763TTmnaUt63aGXLRasaqa3orUJqBXdC9HBG1kdul-zO7HOYbL41yQZzV0h5MDbPwY9opGcd9NIBLqsV7Z0DZylHJzrNtYKF9fHI2h_chJ3HOGc7PoE-7cSwNUP6ZRjjDTDRLoT394Scfh6wzGZaPoLjaCOmQzFAtaJKiEYu0voo9TmVkrF_2MOoufPT7Mx_Pxf9u8fHPaj_GQh_AEdmnA8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086064475</pqid></control><display><type>article</type><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><source>PubMed Central</source><creator>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</creator><creatorcontrib>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</creatorcontrib><description>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</description><identifier>ISSN: 1530-6550</identifier><identifier>ISSN: 2153-8174</identifier><identifier>EISSN: 1530-6550</identifier><identifier>DOI: 10.31083/j.rcm2410296</identifier><identifier>PMID: 39077576</identifier><language>eng</language><publisher>Singapore: IMR Press</publisher><subject>cardio-oncology ; cardiotoxicity ; inequity ; machine learning ; multidisciplinary team ; Review</subject><ispartof>Reviews in cardiovascular medicine, 2023-10, Vol.24 (10), p.296</ispartof><rights>Copyright: © 2023 The Author(s). Published by IMR Press.</rights><rights>Copyright: © 2023 The Author(s). Published by IMR Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273149/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273149/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39077576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><creatorcontrib>Hong, Shenda</creatorcontrib><creatorcontrib>Chan, Jeffrey Shi Kai</creatorcontrib><creatorcontrib>Chen, Kang-Yin</creatorcontrib><creatorcontrib>Xia, Yunlong</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Lip, Gregory Y H</creatorcontrib><creatorcontrib>Qin, Juan</creatorcontrib><creatorcontrib>Tse, Gary</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><title>Reviews in cardiovascular medicine</title><addtitle>Rev Cardiovasc Med</addtitle><description>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</description><subject>cardio-oncology</subject><subject>cardiotoxicity</subject><subject>inequity</subject><subject>machine learning</subject><subject>multidisciplinary team</subject><subject>Review</subject><issn>1530-6550</issn><issn>2153-8174</issn><issn>1530-6550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUFv1DAQhS0EoqVw5Ipy5JLW9tiOwwWhpdCVtvQCZ8t2JlmvEnuxs6D-e0K3lPY0o5k334zmEfKW0XNgVMPF7jz7iQtGeauekVMmgdZKSvr8UX5CXpWyoxS41PCSnEBLm0Y26pRcX1u_DRGrDdocQxyqEKuVzV1I9U30aUzD7YfqG_6u1rGEYTuXqs9pqmysLifMw9-Jz6H4sB8XymvyordjwTf38Yz8-HL5fXVVb26-rlefNrUXUsw1euV0B8BYC8rrzi1lCRob763TTmnaUt63aGXLRasaqa3orUJqBXdC9HBG1kdul-zO7HOYbL41yQZzV0h5MDbPwY9opGcd9NIBLqsV7Z0DZylHJzrNtYKF9fHI2h_chJ3HOGc7PoE-7cSwNUP6ZRjjDTDRLoT394Scfh6wzGZaPoLjaCOmQzFAtaJKiEYu0voo9TmVkrF_2MOoufPT7Mx_Pxf9u8fHPaj_GQh_AEdmnA8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zheng, Yi</creator><creator>Chen, Ziliang</creator><creator>Huang, Shan</creator><creator>Zhang, Nan</creator><creator>Wang, Yueying</creator><creator>Hong, Shenda</creator><creator>Chan, Jeffrey Shi Kai</creator><creator>Chen, Kang-Yin</creator><creator>Xia, Yunlong</creator><creator>Zhang, Yuhui</creator><creator>Lip, Gregory Y H</creator><creator>Qin, Juan</creator><creator>Tse, Gary</creator><creator>Liu, Tong</creator><general>IMR Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231001</creationdate><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><author>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cardio-oncology</topic><topic>cardiotoxicity</topic><topic>inequity</topic><topic>machine learning</topic><topic>multidisciplinary team</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><creatorcontrib>Hong, Shenda</creatorcontrib><creatorcontrib>Chan, Jeffrey Shi Kai</creatorcontrib><creatorcontrib>Chen, Kang-Yin</creatorcontrib><creatorcontrib>Xia, Yunlong</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Lip, Gregory Y H</creatorcontrib><creatorcontrib>Qin, Juan</creatorcontrib><creatorcontrib>Tse, Gary</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Reviews in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yi</au><au>Chen, Ziliang</au><au>Huang, Shan</au><au>Zhang, Nan</au><au>Wang, Yueying</au><au>Hong, Shenda</au><au>Chan, Jeffrey Shi Kai</au><au>Chen, Kang-Yin</au><au>Xia, Yunlong</au><au>Zhang, Yuhui</au><au>Lip, Gregory Y H</au><au>Qin, Juan</au><au>Tse, Gary</au><au>Liu, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</atitle><jtitle>Reviews in cardiovascular medicine</jtitle><addtitle>Rev Cardiovasc Med</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>296</spage><pages>296-</pages><issn>1530-6550</issn><issn>2153-8174</issn><eissn>1530-6550</eissn><abstract>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</abstract><cop>Singapore</cop><pub>IMR Press</pub><pmid>39077576</pmid><doi>10.31083/j.rcm2410296</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6550 |
ispartof | Reviews in cardiovascular medicine, 2023-10, Vol.24 (10), p.296 |
issn | 1530-6550 2153-8174 1530-6550 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863 |
source | PubMed Central |
subjects | cardio-oncology cardiotoxicity inequity machine learning multidisciplinary team Review |
title | Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20in%20Cardio-Oncology:%20New%20Insights%20from%20an%20Emerging%20Discipline&rft.jtitle=Reviews%20in%20cardiovascular%20medicine&rft.au=Zheng,%20Yi&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=296&rft.pages=296-&rft.issn=1530-6550&rft.eissn=1530-6550&rft_id=info:doi/10.31083/j.rcm2410296&rft_dat=%3Cproquest_doaj_%3E3086064475%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086064475&rft_id=info:pmid/39077576&rfr_iscdi=true |