Loading…

Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline

A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine...

Full description

Saved in:
Bibliographic Details
Published in:Reviews in cardiovascular medicine 2023-10, Vol.24 (10), p.296
Main Authors: Zheng, Yi, Chen, Ziliang, Huang, Shan, Zhang, Nan, Wang, Yueying, Hong, Shenda, Chan, Jeffrey Shi Kai, Chen, Kang-Yin, Xia, Yunlong, Zhang, Yuhui, Lip, Gregory Y H, Qin, Juan, Tse, Gary, Liu, Tong
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3
cites
container_end_page
container_issue 10
container_start_page 296
container_title Reviews in cardiovascular medicine
container_volume 24
creator Zheng, Yi
Chen, Ziliang
Huang, Shan
Zhang, Nan
Wang, Yueying
Hong, Shenda
Chan, Jeffrey Shi Kai
Chen, Kang-Yin
Xia, Yunlong
Zhang, Yuhui
Lip, Gregory Y H
Qin, Juan
Tse, Gary
Liu, Tong
description A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.
doi_str_mv 10.31083/j.rcm2410296
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863</doaj_id><sourcerecordid>3086064475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EoqVw5Ipy5JLW9tiOwwWhpdCVtvQCZ8t2JlmvEnuxs6D-e0K3lPY0o5k334zmEfKW0XNgVMPF7jz7iQtGeauekVMmgdZKSvr8UX5CXpWyoxS41PCSnEBLm0Y26pRcX1u_DRGrDdocQxyqEKuVzV1I9U30aUzD7YfqG_6u1rGEYTuXqs9pqmysLifMw9-Jz6H4sB8XymvyordjwTf38Yz8-HL5fXVVb26-rlefNrUXUsw1euV0B8BYC8rrzi1lCRob763TTmnaUt63aGXLRasaqa3orUJqBXdC9HBG1kdul-zO7HOYbL41yQZzV0h5MDbPwY9opGcd9NIBLqsV7Z0DZylHJzrNtYKF9fHI2h_chJ3HOGc7PoE-7cSwNUP6ZRjjDTDRLoT394Scfh6wzGZaPoLjaCOmQzFAtaJKiEYu0voo9TmVkrF_2MOoufPT7Mx_Pxf9u8fHPaj_GQh_AEdmnA8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086064475</pqid></control><display><type>article</type><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><source>PubMed Central</source><creator>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</creator><creatorcontrib>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</creatorcontrib><description>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</description><identifier>ISSN: 1530-6550</identifier><identifier>ISSN: 2153-8174</identifier><identifier>EISSN: 1530-6550</identifier><identifier>DOI: 10.31083/j.rcm2410296</identifier><identifier>PMID: 39077576</identifier><language>eng</language><publisher>Singapore: IMR Press</publisher><subject>cardio-oncology ; cardiotoxicity ; inequity ; machine learning ; multidisciplinary team ; Review</subject><ispartof>Reviews in cardiovascular medicine, 2023-10, Vol.24 (10), p.296</ispartof><rights>Copyright: © 2023 The Author(s). Published by IMR Press.</rights><rights>Copyright: © 2023 The Author(s). Published by IMR Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273149/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273149/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39077576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><creatorcontrib>Hong, Shenda</creatorcontrib><creatorcontrib>Chan, Jeffrey Shi Kai</creatorcontrib><creatorcontrib>Chen, Kang-Yin</creatorcontrib><creatorcontrib>Xia, Yunlong</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Lip, Gregory Y H</creatorcontrib><creatorcontrib>Qin, Juan</creatorcontrib><creatorcontrib>Tse, Gary</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><title>Reviews in cardiovascular medicine</title><addtitle>Rev Cardiovasc Med</addtitle><description>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</description><subject>cardio-oncology</subject><subject>cardiotoxicity</subject><subject>inequity</subject><subject>machine learning</subject><subject>multidisciplinary team</subject><subject>Review</subject><issn>1530-6550</issn><issn>2153-8174</issn><issn>1530-6550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUFv1DAQhS0EoqVw5Ipy5JLW9tiOwwWhpdCVtvQCZ8t2JlmvEnuxs6D-e0K3lPY0o5k334zmEfKW0XNgVMPF7jz7iQtGeauekVMmgdZKSvr8UX5CXpWyoxS41PCSnEBLm0Y26pRcX1u_DRGrDdocQxyqEKuVzV1I9U30aUzD7YfqG_6u1rGEYTuXqs9pqmysLifMw9-Jz6H4sB8XymvyordjwTf38Yz8-HL5fXVVb26-rlefNrUXUsw1euV0B8BYC8rrzi1lCRob763TTmnaUt63aGXLRasaqa3orUJqBXdC9HBG1kdul-zO7HOYbL41yQZzV0h5MDbPwY9opGcd9NIBLqsV7Z0DZylHJzrNtYKF9fHI2h_chJ3HOGc7PoE-7cSwNUP6ZRjjDTDRLoT394Scfh6wzGZaPoLjaCOmQzFAtaJKiEYu0voo9TmVkrF_2MOoufPT7Mx_Pxf9u8fHPaj_GQh_AEdmnA8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zheng, Yi</creator><creator>Chen, Ziliang</creator><creator>Huang, Shan</creator><creator>Zhang, Nan</creator><creator>Wang, Yueying</creator><creator>Hong, Shenda</creator><creator>Chan, Jeffrey Shi Kai</creator><creator>Chen, Kang-Yin</creator><creator>Xia, Yunlong</creator><creator>Zhang, Yuhui</creator><creator>Lip, Gregory Y H</creator><creator>Qin, Juan</creator><creator>Tse, Gary</creator><creator>Liu, Tong</creator><general>IMR Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231001</creationdate><title>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</title><author>Zheng, Yi ; Chen, Ziliang ; Huang, Shan ; Zhang, Nan ; Wang, Yueying ; Hong, Shenda ; Chan, Jeffrey Shi Kai ; Chen, Kang-Yin ; Xia, Yunlong ; Zhang, Yuhui ; Lip, Gregory Y H ; Qin, Juan ; Tse, Gary ; Liu, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cardio-oncology</topic><topic>cardiotoxicity</topic><topic>inequity</topic><topic>machine learning</topic><topic>multidisciplinary team</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><creatorcontrib>Hong, Shenda</creatorcontrib><creatorcontrib>Chan, Jeffrey Shi Kai</creatorcontrib><creatorcontrib>Chen, Kang-Yin</creatorcontrib><creatorcontrib>Xia, Yunlong</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Lip, Gregory Y H</creatorcontrib><creatorcontrib>Qin, Juan</creatorcontrib><creatorcontrib>Tse, Gary</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Reviews in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yi</au><au>Chen, Ziliang</au><au>Huang, Shan</au><au>Zhang, Nan</au><au>Wang, Yueying</au><au>Hong, Shenda</au><au>Chan, Jeffrey Shi Kai</au><au>Chen, Kang-Yin</au><au>Xia, Yunlong</au><au>Zhang, Yuhui</au><au>Lip, Gregory Y H</au><au>Qin, Juan</au><au>Tse, Gary</au><au>Liu, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline</atitle><jtitle>Reviews in cardiovascular medicine</jtitle><addtitle>Rev Cardiovasc Med</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>296</spage><pages>296-</pages><issn>1530-6550</issn><issn>2153-8174</issn><eissn>1530-6550</eissn><abstract>A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.</abstract><cop>Singapore</cop><pub>IMR Press</pub><pmid>39077576</pmid><doi>10.31083/j.rcm2410296</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6550
ispartof Reviews in cardiovascular medicine, 2023-10, Vol.24 (10), p.296
issn 1530-6550
2153-8174
1530-6550
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5c1d3f5b3e45460fbb3ba02eb4d82863
source PubMed Central
subjects cardio-oncology
cardiotoxicity
inequity
machine learning
multidisciplinary team
Review
title Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20in%20Cardio-Oncology:%20New%20Insights%20from%20an%20Emerging%20Discipline&rft.jtitle=Reviews%20in%20cardiovascular%20medicine&rft.au=Zheng,%20Yi&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=296&rft.pages=296-&rft.issn=1530-6550&rft.eissn=1530-6550&rft_id=info:doi/10.31083/j.rcm2410296&rft_dat=%3Cproquest_doaj_%3E3086064475%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-ec6b8d3311936c8dbc45538e7ccab8b680902f9ea592496758a4fa6e0a42b44f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086064475&rft_id=info:pmid/39077576&rfr_iscdi=true