Loading…

Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution

High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) pla...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2019-04, Vol.10, p.522-522
Main Authors: Fu, Yang, Yang, Yong, Chen, Shaoping, Ning, Nina, Hu, Honghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3
cites cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3
container_end_page 522
container_issue
container_start_page 522
container_title Frontiers in plant science
container_volume 10
creator Fu, Yang
Yang, Yong
Chen, Shaoping
Ning, Nina
Hu, Honghong
description High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) plays a key role in primary root growth under salt stress conditions. Mutation of led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two mutant alleles. mutants accumulated greater Na and exhibited a greater Na /K ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of , , , and , and suppressed root meristem activity in . GSH or auxin treatment greatly recovered the expression, auxin distribution and primary root growth in the mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.
doi_str_mv 10.3389/fpls.2019.00522
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c</doaj_id><sourcerecordid>2232072633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</originalsourceid><addsrcrecordid>eNpVkUtPGzEURi3UChBl3R3yspsJHr8m3iBFtKWRQFQJSN1ZftxJjCbj1PbQ9t93QgCBN7auv3uurYPQ55pMGJuq83bb5QkltZoQIig9QMe1lLzikv768OZ8hE5zfiDjEoQo1RyiI1bXRDSUH6PHWTI2-LjNIeP5bMHxTfRDZwpk_DOFjUn_8CLGgq9S_FPW-L73kPDSdAUvS4Kc8d06xWG1xovbZXUDPoyt_gUSYo9ji2fD39DjryGXFOywq35CH1vTZTh93k_Q_fdvd5c_quvbq_nl7LpygopSQdsKaxrnnRLeC6o4mwJYZrlva-qN9E2jpp5a6ZlUklgnoZacuQYIAQB2guZ7ro_mQW_3H9LRBP1UiGmlTSrBdaCFoyC8aKURknsJxhJpuaynUpnGCDeyLvas7WA34B30JZnuHfT9TR_WehUfteSKK0lHwJdnQIq_B8hFb0J20HWmhzhkTSmjpKGSsTF6vo-6FHNO0L6OqYneydc7-XonXz_JHzvO3r7uNf-imv0HQUOuJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232072633</pqid></control><display><type>article</type><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><source>PubMed Central</source><creator>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</creator><creatorcontrib>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</creatorcontrib><description>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) plays a key role in primary root growth under salt stress conditions. Mutation of led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two mutant alleles. mutants accumulated greater Na and exhibited a greater Na /K ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of , , , and , and suppressed root meristem activity in . GSH or auxin treatment greatly recovered the expression, auxin distribution and primary root growth in the mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2019.00522</identifier><identifier>PMID: 31105724</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>auxin transport ; IAR4 ; Plant Science ; primary root growth ; root meristem activity ; ROS ; salt stress</subject><ispartof>Frontiers in plant science, 2019-04, Vol.10, p.522-522</ispartof><rights>Copyright © 2019 Fu, Yang, Chen, Ning and Hu. 2019 Fu, Yang, Chen, Ning and Hu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</citedby><cites>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494962/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494962/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31105724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Yang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Chen, Shaoping</creatorcontrib><creatorcontrib>Ning, Nina</creatorcontrib><creatorcontrib>Hu, Honghong</creatorcontrib><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) plays a key role in primary root growth under salt stress conditions. Mutation of led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two mutant alleles. mutants accumulated greater Na and exhibited a greater Na /K ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of , , , and , and suppressed root meristem activity in . GSH or auxin treatment greatly recovered the expression, auxin distribution and primary root growth in the mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</description><subject>auxin transport</subject><subject>IAR4</subject><subject>Plant Science</subject><subject>primary root growth</subject><subject>root meristem activity</subject><subject>ROS</subject><subject>salt stress</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtPGzEURi3UChBl3R3yspsJHr8m3iBFtKWRQFQJSN1ZftxJjCbj1PbQ9t93QgCBN7auv3uurYPQ55pMGJuq83bb5QkltZoQIig9QMe1lLzikv768OZ8hE5zfiDjEoQo1RyiI1bXRDSUH6PHWTI2-LjNIeP5bMHxTfRDZwpk_DOFjUn_8CLGgq9S_FPW-L73kPDSdAUvS4Kc8d06xWG1xovbZXUDPoyt_gUSYo9ji2fD39DjryGXFOywq35CH1vTZTh93k_Q_fdvd5c_quvbq_nl7LpygopSQdsKaxrnnRLeC6o4mwJYZrlva-qN9E2jpp5a6ZlUklgnoZacuQYIAQB2guZ7ro_mQW_3H9LRBP1UiGmlTSrBdaCFoyC8aKURknsJxhJpuaynUpnGCDeyLvas7WA34B30JZnuHfT9TR_WehUfteSKK0lHwJdnQIq_B8hFb0J20HWmhzhkTSmjpKGSsTF6vo-6FHNO0L6OqYneydc7-XonXz_JHzvO3r7uNf-imv0HQUOuJA</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Fu, Yang</creator><creator>Yang, Yong</creator><creator>Chen, Shaoping</creator><creator>Ning, Nina</creator><creator>Hu, Honghong</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190425</creationdate><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><author>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>auxin transport</topic><topic>IAR4</topic><topic>Plant Science</topic><topic>primary root growth</topic><topic>root meristem activity</topic><topic>ROS</topic><topic>salt stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Chen, Shaoping</creatorcontrib><creatorcontrib>Ning, Nina</creatorcontrib><creatorcontrib>Hu, Honghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yang</au><au>Yang, Yong</au><au>Chen, Shaoping</au><au>Ning, Nina</au><au>Hu, Honghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>10</volume><spage>522</spage><epage>522</epage><pages>522-522</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) plays a key role in primary root growth under salt stress conditions. Mutation of led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two mutant alleles. mutants accumulated greater Na and exhibited a greater Na /K ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of , , , and , and suppressed root meristem activity in . GSH or auxin treatment greatly recovered the expression, auxin distribution and primary root growth in the mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31105724</pmid><doi>10.3389/fpls.2019.00522</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2019-04, Vol.10, p.522-522
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c
source PubMed Central
subjects auxin transport
IAR4
Plant Science
primary root growth
root meristem activity
ROS
salt stress
title Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20IAR4%20Modulates%20Primary%20Root%20Growth%20Under%20Salt%20Stress%20Through%20ROS-Mediated%20Modulation%20of%20Auxin%20Distribution&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Fu,%20Yang&rft.date=2019-04-25&rft.volume=10&rft.spage=522&rft.epage=522&rft.pages=522-522&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2019.00522&rft_dat=%3Cproquest_doaj_%3E2232072633%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232072633&rft_id=info:pmid/31105724&rfr_iscdi=true