Loading…
Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution
High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that ( ) pla...
Saved in:
Published in: | Frontiers in plant science 2019-04, Vol.10, p.522-522 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3 |
container_end_page | 522 |
container_issue | |
container_start_page | 522 |
container_title | Frontiers in plant science |
container_volume | 10 |
creator | Fu, Yang Yang, Yong Chen, Shaoping Ning, Nina Hu, Honghong |
description | High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that
(
) plays a key role in primary root growth under salt stress conditions. Mutation of
led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two
mutant alleles.
mutants accumulated greater Na
and exhibited a greater Na
/K
ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the
mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of
,
,
, and
, and suppressed root meristem activity in
. GSH or auxin treatment greatly recovered the
expression, auxin distribution and primary root growth in the
mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport. |
doi_str_mv | 10.3389/fpls.2019.00522 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c</doaj_id><sourcerecordid>2232072633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</originalsourceid><addsrcrecordid>eNpVkUtPGzEURi3UChBl3R3yspsJHr8m3iBFtKWRQFQJSN1ZftxJjCbj1PbQ9t93QgCBN7auv3uurYPQ55pMGJuq83bb5QkltZoQIig9QMe1lLzikv768OZ8hE5zfiDjEoQo1RyiI1bXRDSUH6PHWTI2-LjNIeP5bMHxTfRDZwpk_DOFjUn_8CLGgq9S_FPW-L73kPDSdAUvS4Kc8d06xWG1xovbZXUDPoyt_gUSYo9ji2fD39DjryGXFOywq35CH1vTZTh93k_Q_fdvd5c_quvbq_nl7LpygopSQdsKaxrnnRLeC6o4mwJYZrlva-qN9E2jpp5a6ZlUklgnoZacuQYIAQB2guZ7ro_mQW_3H9LRBP1UiGmlTSrBdaCFoyC8aKURknsJxhJpuaynUpnGCDeyLvas7WA34B30JZnuHfT9TR_WehUfteSKK0lHwJdnQIq_B8hFb0J20HWmhzhkTSmjpKGSsTF6vo-6FHNO0L6OqYneydc7-XonXz_JHzvO3r7uNf-imv0HQUOuJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232072633</pqid></control><display><type>article</type><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><source>PubMed Central</source><creator>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</creator><creatorcontrib>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</creatorcontrib><description>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that
(
) plays a key role in primary root growth under salt stress conditions. Mutation of
led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two
mutant alleles.
mutants accumulated greater Na
and exhibited a greater Na
/K
ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the
mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of
,
,
, and
, and suppressed root meristem activity in
. GSH or auxin treatment greatly recovered the
expression, auxin distribution and primary root growth in the
mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2019.00522</identifier><identifier>PMID: 31105724</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>auxin transport ; IAR4 ; Plant Science ; primary root growth ; root meristem activity ; ROS ; salt stress</subject><ispartof>Frontiers in plant science, 2019-04, Vol.10, p.522-522</ispartof><rights>Copyright © 2019 Fu, Yang, Chen, Ning and Hu. 2019 Fu, Yang, Chen, Ning and Hu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</citedby><cites>FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494962/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494962/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31105724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Yang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Chen, Shaoping</creatorcontrib><creatorcontrib>Ning, Nina</creatorcontrib><creatorcontrib>Hu, Honghong</creatorcontrib><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that
(
) plays a key role in primary root growth under salt stress conditions. Mutation of
led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two
mutant alleles.
mutants accumulated greater Na
and exhibited a greater Na
/K
ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the
mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of
,
,
, and
, and suppressed root meristem activity in
. GSH or auxin treatment greatly recovered the
expression, auxin distribution and primary root growth in the
mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</description><subject>auxin transport</subject><subject>IAR4</subject><subject>Plant Science</subject><subject>primary root growth</subject><subject>root meristem activity</subject><subject>ROS</subject><subject>salt stress</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtPGzEURi3UChBl3R3yspsJHr8m3iBFtKWRQFQJSN1ZftxJjCbj1PbQ9t93QgCBN7auv3uurYPQ55pMGJuq83bb5QkltZoQIig9QMe1lLzikv768OZ8hE5zfiDjEoQo1RyiI1bXRDSUH6PHWTI2-LjNIeP5bMHxTfRDZwpk_DOFjUn_8CLGgq9S_FPW-L73kPDSdAUvS4Kc8d06xWG1xovbZXUDPoyt_gUSYo9ji2fD39DjryGXFOywq35CH1vTZTh93k_Q_fdvd5c_quvbq_nl7LpygopSQdsKaxrnnRLeC6o4mwJYZrlva-qN9E2jpp5a6ZlUklgnoZacuQYIAQB2guZ7ro_mQW_3H9LRBP1UiGmlTSrBdaCFoyC8aKURknsJxhJpuaynUpnGCDeyLvas7WA34B30JZnuHfT9TR_WehUfteSKK0lHwJdnQIq_B8hFb0J20HWmhzhkTSmjpKGSsTF6vo-6FHNO0L6OqYneydc7-XonXz_JHzvO3r7uNf-imv0HQUOuJA</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Fu, Yang</creator><creator>Yang, Yong</creator><creator>Chen, Shaoping</creator><creator>Ning, Nina</creator><creator>Hu, Honghong</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190425</creationdate><title>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</title><author>Fu, Yang ; Yang, Yong ; Chen, Shaoping ; Ning, Nina ; Hu, Honghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>auxin transport</topic><topic>IAR4</topic><topic>Plant Science</topic><topic>primary root growth</topic><topic>root meristem activity</topic><topic>ROS</topic><topic>salt stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Chen, Shaoping</creatorcontrib><creatorcontrib>Ning, Nina</creatorcontrib><creatorcontrib>Hu, Honghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yang</au><au>Yang, Yong</au><au>Chen, Shaoping</au><au>Ning, Nina</au><au>Hu, Honghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>10</volume><spage>522</spage><epage>522</epage><pages>522-522</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that
(
) plays a key role in primary root growth under salt stress conditions. Mutation of
led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two
mutant alleles.
mutants accumulated greater Na
and exhibited a greater Na
/K
ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the
mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of
,
,
, and
, and suppressed root meristem activity in
. GSH or auxin treatment greatly recovered the
expression, auxin distribution and primary root growth in the
mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31105724</pmid><doi>10.3389/fpls.2019.00522</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2019-04, Vol.10, p.522-522 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c2e5d5f6a564d6eab06b461869a7a5c |
source | PubMed Central |
subjects | auxin transport IAR4 Plant Science primary root growth root meristem activity ROS salt stress |
title | Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20IAR4%20Modulates%20Primary%20Root%20Growth%20Under%20Salt%20Stress%20Through%20ROS-Mediated%20Modulation%20of%20Auxin%20Distribution&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Fu,%20Yang&rft.date=2019-04-25&rft.volume=10&rft.spage=522&rft.epage=522&rft.pages=522-522&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2019.00522&rft_dat=%3Cproquest_doaj_%3E2232072633%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-eff5ba7cdc95dd529438eeb3b4df12da6d7798d2b6d36960bc6e1643c7e00eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232072633&rft_id=info:pmid/31105724&rfr_iscdi=true |