Loading…
Designing synthetic consortia of Trichoderma strains that improve antagonistic activities against pathogens and cucumber seedling growth
Trichoderma spp. are important agricultural biocontrol microorganisms that are often used as effective components of microbial fungicides and microbial biofertilizers. However, most of these products are prepared by a single strain in monoculture, which significantly limits the biocontrol efficiency...
Saved in:
Published in: | Microbial cell factories 2022-11, Vol.21 (1), p.1-234, Article 234 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Trichoderma spp. are important agricultural biocontrol microorganisms that are often used as effective components of microbial fungicides and microbial biofertilizers. However, most of these products are prepared by a single strain in monoculture, which significantly limits the biocontrol efficiency and stability of Trichoderma products. Therefore, the establishment of a design and screening approach for consortia with multi-Trichoderma strains for co-culture is of great importance to overcome the shortage of traditional Trichoderma biocontrol products. First, 15 Trichoderma strains were screened in terms of mycelium growth rate, antagonistic activity to a variety of pathogens, stress tolerance to high temperature and salt stress, and cucumber seedling growth promotion level. Then, the combinations of Trichoderma asperellum GDSF1009 (CGMCC NO. 9512), Trichoderma asperelloides Z4-1 (CGMCC NO. 40245), Trichoderma harzianum 10569 (CGMCC NO. 40246), and T. asperellum 10264 (CGMCC NO. 22404) were finally screened as an optimal consortium for co-culture underlying the levels of plant growth-promoting and antagonistic activity to Fusarium oxysporum and seed germination promotion relative to the monoculture of a single strain. Consortia with multiple co-cultured strains were found to generate larger amounts of free amino acids than those from the monoculture of a single strain, and a pot assay also indicated that metabolites of co-cultures were able to promote cucumber seedling growth superior to that with monoculture of a single strain, even though the promotion was better than from simply mixed cultures from each of the four Trichoderma strains. Taken together, the co-culture consortia composed of the four compatible interactive Trichoderma strains was a potential novel multiple strain biocontrol agent based on the combination of synthetic consortia design and co-culture. In the field experiment, we found that the growth-promoting effect of the co-culture fermentation filtrate was better than that of the single culture fermentation filtrate. Compared with T-Z4-1, T-1009, T-10264 and T-10569, the plant height of cucumber was increased by 22.99%, 42.06%, 24.18% and 30.09%, respectively, and the stem diameter was increased by 16.59%, 18.83%, 13.65% and 14.70%, respectively. An approach to designing and screening Trichoderma consortia for co-culture was established. The consortia co-culture presented a better performance in antagonistic activity and cucumber growth |
---|---|
ISSN: | 1475-2859 1475-2859 |
DOI: | 10.1186/s12934-022-01959-2 |