Loading…

Nox2-derived superoxide radical is crucial to control acute Trypanosoma cruzi infection

Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate i...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology 2021-10, Vol.46, p.102085-102085, Article 102085
Main Authors: Prolo, Carolina, Estrada, Damián, Piacenza, Lucía, Benítez, Diego, Comini, Marcelo A., Radi, Rafael, Álvarez, María Noel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate in the first stages of infection, mounting a cytotoxic response which promotes massive oxidative damage to the parasite. On the other hand, T. cruzi is equipped with a robust antioxidant system to repeal the oxidative attack from macrophages. This work was conceived to explicitly assess the role of mammalian cell-derived superoxide radical in a murine model of acute infection by T. cruzi. Macrophages derived from Nox2-deficient (gp91phox-/-) mice produced marginal amounts of superoxide radical and were more susceptible to parasite infection than those derived from wild type (wt) animals. Also, the lack of superoxide radical led to an impairment of parasite differentiation inside gp91phox-/- macrophages. Biochemical or genetic reconstitution of intraphagosomal superoxide radical formation in gp91phox-/- macrophages reverted the lack of control of infection. Along the same line, gp91phox-/- infected mice died shortly after infection. In spite of the higher lethality, parasitemia did not differ between gp91phox-/- and wt animals, recapitulating an observation that has led to conflicting interpretations about the importance of the mammalian oxidative response against T. cruzi. Importantly, gp91phox-/- mice presented higher and disseminated tissue parasitism, as evaluated by both qPCR- and bioimaging-based methodologies. Thus, this work supports that Nox2-derived superoxide radical plays a crucial role to control T. cruzi infection in the early phase of a murine model of Chagas disease. [Display omitted] ∙Nox2 derived-superoxide radical is required to control Trypanosoma cruzi infection in macrophages∙Nox2-deficient mice (gp91phox-/-) are highly susceptible to Trypanosoma cruzi infection∙Parasitemia does not reflect the level of organ infection observed in wt and gp91phox-/- mice.∙gp91phox-/- mice collapse to infection due to uncontrolled parasite proliferation in tissues
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2021.102085