Loading…
Early and fair COVID-19 outcome risk assessment using robust feature selection
Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and...
Saved in:
Published in: | Scientific reports 2023-11, Vol.13 (1), p.18981-18981, Article 18981 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33 |
container_end_page | 18981 |
container_issue | 1 |
container_start_page | 18981 |
container_title | Scientific reports |
container_volume | 13 |
creator | Giuste, Felipe O. He, Lawrence Lais, Peter Shi, Wenqi Zhu, Yuanda Hornback, Andrew Tsai, Chiche Isgut, Monica Anderson, Blake Wang, May D. |
description | Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards. |
doi_str_mv | 10.1038/s41598-023-36175-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c53904e65b24691966af229d078525b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c53904e65b24691966af229d078525b</doaj_id><sourcerecordid>2886328406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxSdGY5vaL-CKxI2bUf4PrIx5Vn1JYzfqljDM5clzZqjcGZN-e2mnUetCEsINnPO7wGma54y-YlSY1yiZsqalXLRCs0618lFzyqlULRecP_6rPmnOEY-0DsWtZPZpcyI6y-tUp82nC1_GG-LngUSfCtldfd2_a5kleV1CnoCUhN-JRwTECeaFrJjmAym5X3EhEfyyFiAII4Ql5flZ8yT6EeH8fj1rvry_-Lz72F5efdjv3l62QTGztF4MHoSQmlmopQQdoTNGAATT8Rh1H4yBQUH0Q8eAqtBBb2SQNGpNq_Os2W_cIfujuy5p8uXGZZ_c3UYuB-fLksIITgUlLK0tVM-ltsxq7SPndqCdUVz1lfVmY12v_QRDqK8sfnwAfXgyp2_ukH86RjWXlrNKeHlPKPnHCri4KWGAcfQz5BUdN0YLbiTVVfriH-kxr2Wuf3WrUtpQbbuq4psqlIxYIP6-DaPuNn63xe9q_O4ufierSWwmrOL5AOUP-j-uX46isFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885680697</pqid></control><display><type>article</type><title>Early and fair COVID-19 outcome risk assessment using robust feature selection</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Giuste, Felipe O. ; He, Lawrence ; Lais, Peter ; Shi, Wenqi ; Zhu, Yuanda ; Hornback, Andrew ; Tsai, Chiche ; Isgut, Monica ; Anderson, Blake ; Wang, May D.</creator><creatorcontrib>Giuste, Felipe O. ; He, Lawrence ; Lais, Peter ; Shi, Wenqi ; Zhu, Yuanda ; Hornback, Andrew ; Tsai, Chiche ; Isgut, Monica ; Anderson, Blake ; Wang, May D.</creatorcontrib><description>Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-36175-4</identifier><identifier>PMID: 37923795</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2413 ; 692/499 ; 692/53/2423 ; Automation ; COVID-19 ; Dementia disorders ; Demography ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; multidisciplinary ; Patients ; Precision medicine ; Preventable deaths ; Risk assessment ; Science ; Science (multidisciplinary) ; Ventilators</subject><ispartof>Scientific reports, 2023-11, Vol.13 (1), p.18981-18981, Article 18981</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33</citedby><cites>FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33</cites><orcidid>0000-0002-8355-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2885680697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2885680697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,38515,43894,44589,53790,53792,74283,74997</link.rule.ids></links><search><creatorcontrib>Giuste, Felipe O.</creatorcontrib><creatorcontrib>He, Lawrence</creatorcontrib><creatorcontrib>Lais, Peter</creatorcontrib><creatorcontrib>Shi, Wenqi</creatorcontrib><creatorcontrib>Zhu, Yuanda</creatorcontrib><creatorcontrib>Hornback, Andrew</creatorcontrib><creatorcontrib>Tsai, Chiche</creatorcontrib><creatorcontrib>Isgut, Monica</creatorcontrib><creatorcontrib>Anderson, Blake</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><title>Early and fair COVID-19 outcome risk assessment using robust feature selection</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.</description><subject>631/114/1305</subject><subject>631/114/2413</subject><subject>692/499</subject><subject>692/53/2423</subject><subject>Automation</subject><subject>COVID-19</subject><subject>Dementia disorders</subject><subject>Demography</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Preventable deaths</subject><subject>Risk assessment</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Ventilators</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9vFSEUxSdGY5vaL-CKxI2bUf4PrIx5Vn1JYzfqljDM5clzZqjcGZN-e2mnUetCEsINnPO7wGma54y-YlSY1yiZsqalXLRCs0618lFzyqlULRecP_6rPmnOEY-0DsWtZPZpcyI6y-tUp82nC1_GG-LngUSfCtldfd2_a5kleV1CnoCUhN-JRwTECeaFrJjmAym5X3EhEfyyFiAII4Ql5flZ8yT6EeH8fj1rvry_-Lz72F5efdjv3l62QTGztF4MHoSQmlmopQQdoTNGAATT8Rh1H4yBQUH0Q8eAqtBBb2SQNGpNq_Os2W_cIfujuy5p8uXGZZ_c3UYuB-fLksIITgUlLK0tVM-ltsxq7SPndqCdUVz1lfVmY12v_QRDqK8sfnwAfXgyp2_ukH86RjWXlrNKeHlPKPnHCri4KWGAcfQz5BUdN0YLbiTVVfriH-kxr2Wuf3WrUtpQbbuq4psqlIxYIP6-DaPuNn63xe9q_O4ufierSWwmrOL5AOUP-j-uX46isFQ</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>Giuste, Felipe O.</creator><creator>He, Lawrence</creator><creator>Lais, Peter</creator><creator>Shi, Wenqi</creator><creator>Zhu, Yuanda</creator><creator>Hornback, Andrew</creator><creator>Tsai, Chiche</creator><creator>Isgut, Monica</creator><creator>Anderson, Blake</creator><creator>Wang, May D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8355-3705</orcidid></search><sort><creationdate>20231103</creationdate><title>Early and fair COVID-19 outcome risk assessment using robust feature selection</title><author>Giuste, Felipe O. ; He, Lawrence ; Lais, Peter ; Shi, Wenqi ; Zhu, Yuanda ; Hornback, Andrew ; Tsai, Chiche ; Isgut, Monica ; Anderson, Blake ; Wang, May D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1305</topic><topic>631/114/2413</topic><topic>692/499</topic><topic>692/53/2423</topic><topic>Automation</topic><topic>COVID-19</topic><topic>Dementia disorders</topic><topic>Demography</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Preventable deaths</topic><topic>Risk assessment</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giuste, Felipe O.</creatorcontrib><creatorcontrib>He, Lawrence</creatorcontrib><creatorcontrib>Lais, Peter</creatorcontrib><creatorcontrib>Shi, Wenqi</creatorcontrib><creatorcontrib>Zhu, Yuanda</creatorcontrib><creatorcontrib>Hornback, Andrew</creatorcontrib><creatorcontrib>Tsai, Chiche</creatorcontrib><creatorcontrib>Isgut, Monica</creatorcontrib><creatorcontrib>Anderson, Blake</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giuste, Felipe O.</au><au>He, Lawrence</au><au>Lais, Peter</au><au>Shi, Wenqi</au><au>Zhu, Yuanda</au><au>Hornback, Andrew</au><au>Tsai, Chiche</au><au>Isgut, Monica</au><au>Anderson, Blake</au><au>Wang, May D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early and fair COVID-19 outcome risk assessment using robust feature selection</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-11-03</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>18981</spage><epage>18981</epage><pages>18981-18981</pages><artnum>18981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37923795</pmid><doi>10.1038/s41598-023-36175-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8355-3705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-11, Vol.13 (1), p.18981-18981, Article 18981 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c53904e65b24691966af229d078525b |
source | Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/114/2413 692/499 692/53/2423 Automation COVID-19 Dementia disorders Demography Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Patients Precision medicine Preventable deaths Risk assessment Science Science (multidisciplinary) Ventilators |
title | Early and fair COVID-19 outcome risk assessment using robust feature selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20and%20fair%20COVID-19%20outcome%20risk%20assessment%20using%20robust%20feature%20selection&rft.jtitle=Scientific%20reports&rft.au=Giuste,%20Felipe%20O.&rft.date=2023-11-03&rft.volume=13&rft.issue=1&rft.spage=18981&rft.epage=18981&rft.pages=18981-18981&rft.artnum=18981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-36175-4&rft_dat=%3Cproquest_doaj_%3E2886328406%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885680697&rft_id=info:pmid/37923795&rfr_iscdi=true |