Loading…

A preventive opportunistic maintenance method for railway traction power supply system based on equipment reliability

Conventional maintenance mode for the traction power supply system (TPSS) is to perform scheduled regular maintenance activities for power supply equipment, while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts...

Full description

Saved in:
Bibliographic Details
Published in:Railway Engineering Science (Online) 2020-06, Vol.28 (2), p.199-211
Main Authors: Lin, Sheng, Li, Nan, Feng, Ding, Guo, Xiaomin, Pan, Weiguo, Wang, Jun, Yang, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional maintenance mode for the traction power supply system (TPSS) is to perform scheduled regular maintenance activities for power supply equipment, while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment. To address this problem, this paper introduces a preventive opportunistic maintenance (POM) method for TPSS based on equipment reliability. Firstly, a POM model is established by considering the equipment reliability degradation process based on Weibull distribution. Then, by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective, the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies. The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer, circuit breaker and disconnector in an actual TPSS of a railway administration. Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS. It can improve maintenance efficiency and reduce power outage time, providing guidance to formulate scientific maintenance strategies for TPSS.
ISSN:2662-4745
2662-4753
DOI:10.1007/s40534-020-00211-0