Loading…

Schiff Bases of Pioglitazone Provide Better Antidiabetic and Potent Antioxidant Effect in a Streptozotocin–Nicotinamide-Induced Diabetic Rodent Model

Pioglitazone is a Food and Drug Administration-approved thiazolidinedione (TZD) derivative and peroxisome proliferator-activated receptor gamma (PPARγ) agonist and used for the treatment of diabetes mellitus (DM). However, this drug is still associated with many adverse effects. In the present study...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-02, Vol.6 (6), p.4470-4479
Main Authors: Afzal, Hafiza Rabia, Khan, Najm ul Hassan, Sultana, Kishwar, Mobashar, Aisha, Lareb, Aqsa, Khan, Ayesha, Gull, Abrashim, Afzaal, Hasan, Khan, Muhammad Tariq, Rizwan, Muhammad, Imran, Muhammad
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pioglitazone is a Food and Drug Administration-approved thiazolidinedione (TZD) derivative and peroxisome proliferator-activated receptor gamma (PPARγ) agonist and used for the treatment of diabetes mellitus (DM). However, this drug is still associated with many adverse effects. In the present study, four new Schiff bases of pioglitazone (P1–P4) were synthesized and characterized using FTIR, 1HNMR, 13CNMR, mass spectrometry, and elemental analysis. For preliminary screening, the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and in vitro alpha-amylase antidiabetic inhibitory assay were performed. Further, P3 was used to investigate in vivo antioxidant and in vivo antidiabetic effects in a streptozotocin–nicotinamide-induced diabetic rat model. Diabetic rats were administered with an i.p dose of pioglitazone 10 mg/kg body weight for 21 days. Moreover, biochemical parameters and antioxidants were quantified from liver and kidney tissues of rodents. In the DPPH assay, compound P3 showed superior antioxidant effects. Using the in vitro α-amylase inhibitory assay, P3 exhibited potent effects as compared to other groups, that is, 93% inhibition, while pioglitazone showed 81% inhibition. Enzymatic and nonenzymatic antioxidants showed significant changes in P3 (10 mg/kg)-treated groups (p < 0.001). Similarly, compound P3 produced significant and better results in comparison to pioglitazone in the rodent model. This study confirmed potent antidiabetic and superior antioxidant potential of the newly synthesized Schiff base (P3), which could ultimately account for insulin sensitization and for cellular protection and hence provide a potential clue for dual therapeutics.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c06064