Loading…

Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration

We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercrit...

Full description

Saved in:
Bibliographic Details
Published in:Gels 2023-01, Vol.9 (1), p.67
Main Authors: Reyes-Peces, María V, Fernández-Montesinos, Rafael, Mesa-Díaz, María Del Mar, Vilches-Pérez, José Ignacio, Cárdenas-Leal, Jose Luis, de la Rosa-Fox, Nicolás, Salido, Mercedes, Piñero, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3
cites cdi_FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3
container_end_page
container_issue 1
container_start_page 67
container_title Gels
container_volume 9
creator Reyes-Peces, María V
Fernández-Montesinos, Rafael
Mesa-Díaz, María Del Mar
Vilches-Pérez, José Ignacio
Cárdenas-Leal, Jose Luis
de la Rosa-Fox, Nicolás
Salido, Mercedes
Piñero, Manuel
description We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
doi_str_mv 10.3390/gels9010067
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b</doaj_id><sourcerecordid>2767208701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhoMotqy98l4C3ghlNB-Tj70R2qJtoaK0eh3OZM5us8wmazJT2H9v1q1l61VCzpOH9xwOIW85-yjlnH1a4lDmjDOmzQtyLCRnjbCavzy4H5GTUlaMMW6UVJy_JkdSa82tlMck3Y158uOUsbnFAUbs6Tf09xCDh4H-yGmDeQxYKMSenocEfgwPYdzStKB3YahUc7n7FyK92nY59PQMc9qloouU6XmKSG9xiRFzhVJ8Q14tYCh48njOyK-vX35eXDU33y-vL85uGt8aNTY9F5Zxya2QgvVgvdfAmGq9NlriXAoFxnLBNQimOlxIUGiEbb1kiusO5Ixc7719gpXb5LCGvHUJgvv7kPLSQW3MD-iUN6YDa5lA1qJEkEqCabvq6phuu-r6vHdtpm6Nvcc4ZhieSZ9XYrh3y_Tg5lZZo3QVfHgU5PR7wjK6dSgehwEipqk4YXRtlGslKvr-P3SVphzrqHaUEcyaOpcZOd1TPqdSMi6ewnDmdnvhDvai0u8O8z-x_7ZA_gHRK7MG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767208701</pqid></control><display><type>article</type><title>Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Reyes-Peces, María V ; Fernández-Montesinos, Rafael ; Mesa-Díaz, María Del Mar ; Vilches-Pérez, José Ignacio ; Cárdenas-Leal, Jose Luis ; de la Rosa-Fox, Nicolás ; Salido, Mercedes ; Piñero, Manuel</creator><creatorcontrib>Reyes-Peces, María V ; Fernández-Montesinos, Rafael ; Mesa-Díaz, María Del Mar ; Vilches-Pérez, José Ignacio ; Cárdenas-Leal, Jose Luis ; de la Rosa-Fox, Nicolás ; Salido, Mercedes ; Piñero, Manuel</creatorcontrib><description>We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.</description><identifier>ISSN: 2310-2861</identifier><identifier>EISSN: 2310-2861</identifier><identifier>DOI: 10.3390/gels9010067</identifier><identifier>PMID: 36661833</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerogels ; bioactivity ; Biocompatibility ; Biological activity ; Biomedical materials ; Body fluids ; Bulk density ; Cell adhesion ; Cell adhesion &amp; migration ; Collagen ; Coupling agents ; Experiments ; Fourier transforms ; Gelatin ; GPTMS ; hybrid aerogel ; Hydroxyapatite ; In vitro methods and tests ; Infrared analysis ; Mechanical properties ; Nucleation ; Oil recovery ; Percolation ; percolation threshold ; Pore size ; Porous materials ; Regeneration (physiology) ; Silicon dioxide ; Sol-gel processes ; Swelling ratio ; Thermodynamic properties ; Thermogravimetric analysis ; Tissue engineering ; Toxicity</subject><ispartof>Gels, 2023-01, Vol.9 (1), p.67</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3</citedby><cites>FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3</cites><orcidid>0000-0002-7066-5660 ; 0000-0001-7019-3563 ; 0000-0001-9070-2257 ; 0000-0002-7528-8331 ; 0000-0001-8898-4371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767208701/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767208701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36661833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes-Peces, María V</creatorcontrib><creatorcontrib>Fernández-Montesinos, Rafael</creatorcontrib><creatorcontrib>Mesa-Díaz, María Del Mar</creatorcontrib><creatorcontrib>Vilches-Pérez, José Ignacio</creatorcontrib><creatorcontrib>Cárdenas-Leal, Jose Luis</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Salido, Mercedes</creatorcontrib><creatorcontrib>Piñero, Manuel</creatorcontrib><title>Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration</title><title>Gels</title><addtitle>Gels</addtitle><description>We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.</description><subject>Aerogels</subject><subject>bioactivity</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bulk density</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Collagen</subject><subject>Coupling agents</subject><subject>Experiments</subject><subject>Fourier transforms</subject><subject>Gelatin</subject><subject>GPTMS</subject><subject>hybrid aerogel</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Mechanical properties</subject><subject>Nucleation</subject><subject>Oil recovery</subject><subject>Percolation</subject><subject>percolation threshold</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Regeneration (physiology)</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Swelling ratio</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>2310-2861</issn><issn>2310-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhoMotqy98l4C3ghlNB-Tj70R2qJtoaK0eh3OZM5us8wmazJT2H9v1q1l61VCzpOH9xwOIW85-yjlnH1a4lDmjDOmzQtyLCRnjbCavzy4H5GTUlaMMW6UVJy_JkdSa82tlMck3Y158uOUsbnFAUbs6Tf09xCDh4H-yGmDeQxYKMSenocEfgwPYdzStKB3YahUc7n7FyK92nY59PQMc9qloouU6XmKSG9xiRFzhVJ8Q14tYCh48njOyK-vX35eXDU33y-vL85uGt8aNTY9F5Zxya2QgvVgvdfAmGq9NlriXAoFxnLBNQimOlxIUGiEbb1kiusO5Ixc7719gpXb5LCGvHUJgvv7kPLSQW3MD-iUN6YDa5lA1qJEkEqCabvq6phuu-r6vHdtpm6Nvcc4ZhieSZ9XYrh3y_Tg5lZZo3QVfHgU5PR7wjK6dSgehwEipqk4YXRtlGslKvr-P3SVphzrqHaUEcyaOpcZOd1TPqdSMi6ewnDmdnvhDvai0u8O8z-x_7ZA_gHRK7MG</recordid><startdate>20230114</startdate><enddate>20230114</enddate><creator>Reyes-Peces, María V</creator><creator>Fernández-Montesinos, Rafael</creator><creator>Mesa-Díaz, María Del Mar</creator><creator>Vilches-Pérez, José Ignacio</creator><creator>Cárdenas-Leal, Jose Luis</creator><creator>de la Rosa-Fox, Nicolás</creator><creator>Salido, Mercedes</creator><creator>Piñero, Manuel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7066-5660</orcidid><orcidid>https://orcid.org/0000-0001-7019-3563</orcidid><orcidid>https://orcid.org/0000-0001-9070-2257</orcidid><orcidid>https://orcid.org/0000-0002-7528-8331</orcidid><orcidid>https://orcid.org/0000-0001-8898-4371</orcidid></search><sort><creationdate>20230114</creationdate><title>Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration</title><author>Reyes-Peces, María V ; Fernández-Montesinos, Rafael ; Mesa-Díaz, María Del Mar ; Vilches-Pérez, José Ignacio ; Cárdenas-Leal, Jose Luis ; de la Rosa-Fox, Nicolás ; Salido, Mercedes ; Piñero, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>bioactivity</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bulk density</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Collagen</topic><topic>Coupling agents</topic><topic>Experiments</topic><topic>Fourier transforms</topic><topic>Gelatin</topic><topic>GPTMS</topic><topic>hybrid aerogel</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Mechanical properties</topic><topic>Nucleation</topic><topic>Oil recovery</topic><topic>Percolation</topic><topic>percolation threshold</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Regeneration (physiology)</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Swelling ratio</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Peces, María V</creatorcontrib><creatorcontrib>Fernández-Montesinos, Rafael</creatorcontrib><creatorcontrib>Mesa-Díaz, María Del Mar</creatorcontrib><creatorcontrib>Vilches-Pérez, José Ignacio</creatorcontrib><creatorcontrib>Cárdenas-Leal, Jose Luis</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Salido, Mercedes</creatorcontrib><creatorcontrib>Piñero, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Gels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Peces, María V</au><au>Fernández-Montesinos, Rafael</au><au>Mesa-Díaz, María Del Mar</au><au>Vilches-Pérez, José Ignacio</au><au>Cárdenas-Leal, Jose Luis</au><au>de la Rosa-Fox, Nicolás</au><au>Salido, Mercedes</au><au>Piñero, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration</atitle><jtitle>Gels</jtitle><addtitle>Gels</addtitle><date>2023-01-14</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>67</spage><pages>67-</pages><issn>2310-2861</issn><eissn>2310-2861</eissn><abstract>We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36661833</pmid><doi>10.3390/gels9010067</doi><orcidid>https://orcid.org/0000-0002-7066-5660</orcidid><orcidid>https://orcid.org/0000-0001-7019-3563</orcidid><orcidid>https://orcid.org/0000-0001-9070-2257</orcidid><orcidid>https://orcid.org/0000-0002-7528-8331</orcidid><orcidid>https://orcid.org/0000-0001-8898-4371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2310-2861
ispartof Gels, 2023-01, Vol.9 (1), p.67
issn 2310-2861
2310-2861
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b
source Publicly Available Content Database; PubMed Central
subjects Aerogels
bioactivity
Biocompatibility
Biological activity
Biomedical materials
Body fluids
Bulk density
Cell adhesion
Cell adhesion & migration
Collagen
Coupling agents
Experiments
Fourier transforms
Gelatin
GPTMS
hybrid aerogel
Hydroxyapatite
In vitro methods and tests
Infrared analysis
Mechanical properties
Nucleation
Oil recovery
Percolation
percolation threshold
Pore size
Porous materials
Regeneration (physiology)
Silicon dioxide
Sol-gel processes
Swelling ratio
Thermodynamic properties
Thermogravimetric analysis
Tissue engineering
Toxicity
title Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Related%20Mechanical%20Properties%20and%20Bioactivity%20of%20Silica-Gelatin%20Hybrid%20Aerogels%20for%20Bone%20Regeneration&rft.jtitle=Gels&rft.au=Reyes-Peces,%20Mar%C3%ADa%20V&rft.date=2023-01-14&rft.volume=9&rft.issue=1&rft.spage=67&rft.pages=67-&rft.issn=2310-2861&rft.eissn=2310-2861&rft_id=info:doi/10.3390/gels9010067&rft_dat=%3Cproquest_doaj_%3E2767208701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767208701&rft_id=info:pmid/36661833&rfr_iscdi=true