Loading…
Estimating the global abundance of ground level presence of particulate matter (PM2.5)
With the increasing awareness of the health impacts of particulate matter, there is a growing need to comprehend the spatial and temporal variations of the global abundance of ground level airborne particulate matter with a diameter of 2.5 microns or less (PM2.5). Here we use a suite of remote sensi...
Saved in:
Published in: | Geospatial health 2014-12, Vol.8 (3), p.S611-S630 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing awareness of the health impacts of particulate matter, there is a growing need to comprehend the spatial and temporal variations of the global abundance of ground level airborne particulate matter with a diameter of 2.5 microns or less (PM2.5). Here we use a suite of remote sensing and meteorological data products together with ground-based observations of particulate matter from 8,329 measurement sites in 55 countries taken 1997-2014 to train a machine-learning algorithm to estimate the daily distributions of PM2.5 from 1997 to the present. In this first paper of a series, we present the methodology and global average results from this period and demonstrate that the new PM2.5 data product can reliably represent global observations of PM2.5 for epidemiological studies. |
---|---|
ISSN: | 1827-1987 1970-7096 1970-7096 |
DOI: | 10.4081/gh.2014.292 |