Loading…

Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data

Timely and continuous information about flood dynamics are fundamental to ensure an effective implementation of the relief and rescue operations. Satellite data provided by optical sensors onboard meteorological satellites could have great potential in this framework, offering an adequate trade-off...

Full description

Saved in:
Bibliographic Details
Published in:Hydrology 2018-09, Vol.5 (3), p.43
Main Authors: Lacava, Teodosio, Ciancia, Emanuele, Faruolo, Mariapia, Pergola, Nicola, Satriano, Valeria, Tramutoli, Valerio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483
cites cdi_FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483
container_end_page
container_issue 3
container_start_page 43
container_title Hydrology
container_volume 5
creator Lacava, Teodosio
Ciancia, Emanuele
Faruolo, Mariapia
Pergola, Nicola
Satriano, Valeria
Tramutoli, Valerio
description Timely and continuous information about flood dynamics are fundamental to ensure an effective implementation of the relief and rescue operations. Satellite data provided by optical sensors onboard meteorological satellites could have great potential in this framework, offering an adequate trade-off between spatial and temporal resolution. The latest would benefit from the integration of observations coming from different satellite systems, also helping to increase the probability of finding cloud free images over the investigated region. The Robust Satellite Techniques for detecting flooded areas (RST-FLOOD) is a sensor-independent multi-temporal approach aimed at detecting flooded areas which has already been applied with good results on different polar orbiting optical sensors. In this work, it has been implemented on both the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) and the 375 m Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The flooding event affecting the Basilicata and Puglia regions (southern Italy) in December 2013 has been selected as a test case. The achieved results confirm the RST-FLOOD potential in reliably detecting, in case of small basins, flooded areas regardless of the sensor used. Flooded areas have indeed been detected with similar performance by the two sensors, allowing for their continuous and near-real time monitoring.
doi_str_mv 10.3390/hydrology5030043
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5caa197efe75485c8548262de1ca192b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5caa197efe75485c8548262de1ca192b</doaj_id><sourcerecordid>2120772099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483</originalsourceid><addsrcrecordid>eNpdUcFqGzEQFaWBBif3HgW9tAc3I2llrY4hTVpDSgpOz2JWO-usUVauJAc2X1-lLqH0MjM83rw3zGPsvYDPSlm4eJj7FEPczhoUQKPesFOpYLXUSrVv_5nfsfOcdwAghWgbgFP2dDlhmJ_HacvLA_Ev5Omxo8QlCMW_U8F9nErkPwKOE_-4iYfKShNfl7r1id-EGHt-_URT4d3M11OhbcLyona3L6PHwDc05Zgy32ChEMZSPbDgGTsZMGQ6_9sX7OfN9f3Vt-Xt3df11eXt0itjy9I2nfEWZKcEQNv5HqlbWdlpoxsJKLzUhGbQgzUDaTQ9mhVo2Vmr2l40rVqw9VG3j7hz-zQ-YppdxNH9AWLaOkz10EBOe0RhDQ1UxVvt21rlSvYkfMXrCQv24ai1T_HXgXJxu3hI9X3ZSSHBGAnVd8HgyPIp5pxoeHUV4F7Ccv-HpX4DjtWI7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120772099</pqid></control><display><type>article</type><title>Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data</title><source>Publicly Available Content Database</source><creator>Lacava, Teodosio ; Ciancia, Emanuele ; Faruolo, Mariapia ; Pergola, Nicola ; Satriano, Valeria ; Tramutoli, Valerio</creator><creatorcontrib>Lacava, Teodosio ; Ciancia, Emanuele ; Faruolo, Mariapia ; Pergola, Nicola ; Satriano, Valeria ; Tramutoli, Valerio</creatorcontrib><description>Timely and continuous information about flood dynamics are fundamental to ensure an effective implementation of the relief and rescue operations. Satellite data provided by optical sensors onboard meteorological satellites could have great potential in this framework, offering an adequate trade-off between spatial and temporal resolution. The latest would benefit from the integration of observations coming from different satellite systems, also helping to increase the probability of finding cloud free images over the investigated region. The Robust Satellite Techniques for detecting flooded areas (RST-FLOOD) is a sensor-independent multi-temporal approach aimed at detecting flooded areas which has already been applied with good results on different polar orbiting optical sensors. In this work, it has been implemented on both the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) and the 375 m Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The flooding event affecting the Basilicata and Puglia regions (southern Italy) in December 2013 has been selected as a test case. The achieved results confirm the RST-FLOOD potential in reliably detecting, in case of small basins, flooded areas regardless of the sensor used. Flooded areas have indeed been detected with similar performance by the two sensors, allowing for their continuous and near-real time monitoring.</description><identifier>ISSN: 2306-5338</identifier><identifier>EISSN: 2306-5338</identifier><identifier>DOI: 10.3390/hydrology5030043</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Archives &amp; records ; Basins ; data integration ; flood ; Flooded areas ; Flooding ; Floods ; Hydrology ; Imaging techniques ; Infrared imaging ; Infrared radiometers ; Meteorological satellites ; MODIS ; optical data ; Optical measuring instruments ; Probability theory ; Radiometers ; Radiometry ; remote sensing ; Rescue operations ; Resolution ; RST-FLOOD ; Satellites ; Sensors ; Spectroradiometers ; Temporal resolution ; VIIRS</subject><ispartof>Hydrology, 2018-09, Vol.5 (3), p.43</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483</citedby><cites>FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483</cites><orcidid>0000-0003-3875-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2120772099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2120772099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lacava, Teodosio</creatorcontrib><creatorcontrib>Ciancia, Emanuele</creatorcontrib><creatorcontrib>Faruolo, Mariapia</creatorcontrib><creatorcontrib>Pergola, Nicola</creatorcontrib><creatorcontrib>Satriano, Valeria</creatorcontrib><creatorcontrib>Tramutoli, Valerio</creatorcontrib><title>Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data</title><title>Hydrology</title><description>Timely and continuous information about flood dynamics are fundamental to ensure an effective implementation of the relief and rescue operations. Satellite data provided by optical sensors onboard meteorological satellites could have great potential in this framework, offering an adequate trade-off between spatial and temporal resolution. The latest would benefit from the integration of observations coming from different satellite systems, also helping to increase the probability of finding cloud free images over the investigated region. The Robust Satellite Techniques for detecting flooded areas (RST-FLOOD) is a sensor-independent multi-temporal approach aimed at detecting flooded areas which has already been applied with good results on different polar orbiting optical sensors. In this work, it has been implemented on both the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) and the 375 m Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The flooding event affecting the Basilicata and Puglia regions (southern Italy) in December 2013 has been selected as a test case. The achieved results confirm the RST-FLOOD potential in reliably detecting, in case of small basins, flooded areas regardless of the sensor used. Flooded areas have indeed been detected with similar performance by the two sensors, allowing for their continuous and near-real time monitoring.</description><subject>Archives &amp; records</subject><subject>Basins</subject><subject>data integration</subject><subject>flood</subject><subject>Flooded areas</subject><subject>Flooding</subject><subject>Floods</subject><subject>Hydrology</subject><subject>Imaging techniques</subject><subject>Infrared imaging</subject><subject>Infrared radiometers</subject><subject>Meteorological satellites</subject><subject>MODIS</subject><subject>optical data</subject><subject>Optical measuring instruments</subject><subject>Probability theory</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>remote sensing</subject><subject>Rescue operations</subject><subject>Resolution</subject><subject>RST-FLOOD</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spectroradiometers</subject><subject>Temporal resolution</subject><subject>VIIRS</subject><issn>2306-5338</issn><issn>2306-5338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUcFqGzEQFaWBBif3HgW9tAc3I2llrY4hTVpDSgpOz2JWO-usUVauJAc2X1-lLqH0MjM83rw3zGPsvYDPSlm4eJj7FEPczhoUQKPesFOpYLXUSrVv_5nfsfOcdwAghWgbgFP2dDlhmJ_HacvLA_Ev5Omxo8QlCMW_U8F9nErkPwKOE_-4iYfKShNfl7r1id-EGHt-_URT4d3M11OhbcLyona3L6PHwDc05Zgy32ChEMZSPbDgGTsZMGQ6_9sX7OfN9f3Vt-Xt3df11eXt0itjy9I2nfEWZKcEQNv5HqlbWdlpoxsJKLzUhGbQgzUDaTQ9mhVo2Vmr2l40rVqw9VG3j7hz-zQ-YppdxNH9AWLaOkz10EBOe0RhDQ1UxVvt21rlSvYkfMXrCQv24ai1T_HXgXJxu3hI9X3ZSSHBGAnVd8HgyPIp5pxoeHUV4F7Ccv-HpX4DjtWI7A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Lacava, Teodosio</creator><creator>Ciancia, Emanuele</creator><creator>Faruolo, Mariapia</creator><creator>Pergola, Nicola</creator><creator>Satriano, Valeria</creator><creator>Tramutoli, Valerio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H98</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M0K</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3875-7909</orcidid></search><sort><creationdate>20180901</creationdate><title>Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data</title><author>Lacava, Teodosio ; Ciancia, Emanuele ; Faruolo, Mariapia ; Pergola, Nicola ; Satriano, Valeria ; Tramutoli, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archives &amp; records</topic><topic>Basins</topic><topic>data integration</topic><topic>flood</topic><topic>Flooded areas</topic><topic>Flooding</topic><topic>Floods</topic><topic>Hydrology</topic><topic>Imaging techniques</topic><topic>Infrared imaging</topic><topic>Infrared radiometers</topic><topic>Meteorological satellites</topic><topic>MODIS</topic><topic>optical data</topic><topic>Optical measuring instruments</topic><topic>Probability theory</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>remote sensing</topic><topic>Rescue operations</topic><topic>Resolution</topic><topic>RST-FLOOD</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spectroradiometers</topic><topic>Temporal resolution</topic><topic>VIIRS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacava, Teodosio</creatorcontrib><creatorcontrib>Ciancia, Emanuele</creatorcontrib><creatorcontrib>Faruolo, Mariapia</creatorcontrib><creatorcontrib>Pergola, Nicola</creatorcontrib><creatorcontrib>Satriano, Valeria</creatorcontrib><creatorcontrib>Tramutoli, Valerio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacava, Teodosio</au><au>Ciancia, Emanuele</au><au>Faruolo, Mariapia</au><au>Pergola, Nicola</au><au>Satriano, Valeria</au><au>Tramutoli, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data</atitle><jtitle>Hydrology</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>43</spage><pages>43-</pages><issn>2306-5338</issn><eissn>2306-5338</eissn><abstract>Timely and continuous information about flood dynamics are fundamental to ensure an effective implementation of the relief and rescue operations. Satellite data provided by optical sensors onboard meteorological satellites could have great potential in this framework, offering an adequate trade-off between spatial and temporal resolution. The latest would benefit from the integration of observations coming from different satellite systems, also helping to increase the probability of finding cloud free images over the investigated region. The Robust Satellite Techniques for detecting flooded areas (RST-FLOOD) is a sensor-independent multi-temporal approach aimed at detecting flooded areas which has already been applied with good results on different polar orbiting optical sensors. In this work, it has been implemented on both the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) and the 375 m Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The flooding event affecting the Basilicata and Puglia regions (southern Italy) in December 2013 has been selected as a test case. The achieved results confirm the RST-FLOOD potential in reliably detecting, in case of small basins, flooded areas regardless of the sensor used. Flooded areas have indeed been detected with similar performance by the two sensors, allowing for their continuous and near-real time monitoring.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/hydrology5030043</doi><orcidid>https://orcid.org/0000-0003-3875-7909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5338
ispartof Hydrology, 2018-09, Vol.5 (3), p.43
issn 2306-5338
2306-5338
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5caa197efe75485c8548262de1ca192b
source Publicly Available Content Database
subjects Archives & records
Basins
data integration
flood
Flooded areas
Flooding
Floods
Hydrology
Imaging techniques
Infrared imaging
Infrared radiometers
Meteorological satellites
MODIS
optical data
Optical measuring instruments
Probability theory
Radiometers
Radiometry
remote sensing
Rescue operations
Resolution
RST-FLOOD
Satellites
Sensors
Spectroradiometers
Temporal resolution
VIIRS
title Analyzing the December 2013 Metaponto Plain (Southern Italy) Flood Event by Integrating Optical Sensors Satellite Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20December%202013%20Metaponto%20Plain%20(Southern%20Italy)%20Flood%20Event%20by%20Integrating%20Optical%20Sensors%20Satellite%20Data&rft.jtitle=Hydrology&rft.au=Lacava,%20Teodosio&rft.date=2018-09-01&rft.volume=5&rft.issue=3&rft.spage=43&rft.pages=43-&rft.issn=2306-5338&rft.eissn=2306-5338&rft_id=info:doi/10.3390/hydrology5030043&rft_dat=%3Cproquest_doaj_%3E2120772099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-94b7c902b31008bcdaeb692b575420a1c25ea7f5f97fe5a7da76052b9938d1483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120772099&rft_id=info:pmid/&rfr_iscdi=true