Loading…

Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry

This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of 'Daidai' and L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-07, Vol.29 (15), p.3498
Main Authors: Xie, Xinyue, Xue, Huiling, Ma, Baoshan, Guo, Xiaoqian, Xia, Yanli, Yang, Yuxia, Xu, Ke, Li, Ting, Luo, Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3448-b13b24813f94e6886de981a3aa8da087c6903b4873962124d64c3562531cf0083
container_end_page
container_issue 15
container_start_page 3498
container_title Molecules (Basel, Switzerland)
container_volume 29
creator Xie, Xinyue
Xue, Huiling
Ma, Baoshan
Guo, Xiaoqian
Xia, Yanli
Yang, Yuxia
Xu, Ke
Li, Ting
Luo, Xia
description This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of 'Daidai' and L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound-microwave procedure; and the ultrasound-microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.
doi_str_mv 10.3390/molecules29153498
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5cc0e1fb94d14fe78ad9c9b228d0e1f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804517539</galeid><doaj_id>oai_doaj_org_article_5cc0e1fb94d14fe78ad9c9b228d0e1f4</doaj_id><sourcerecordid>A804517539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3448-b13b24813f94e6886de981a3aa8da087c6903b4873962124d64c3562531cf0083</originalsourceid><addsrcrecordid>eNptUtFu0zAUjRCIjcEH8IIs8TBeUuzYSe3H0o51UicmjfEa3dg3rackzuwE6JfwQfwSH4DbjoEA-cHW9TnH1-fcJHnJ6IRzRd-2rkE9NhgyxXIulHyUHDOR0ZRToR7_cT5KnoVwS2nGBMufJkdcsUwoyo-TH3PX9uBhsJ-RzDpotsEG4mqy3BrvgmvIJ9fE2wbJDuk67Ib9_dwOfgzk-zcyGz10gx1bcroAa8CeEujMfwGrCVl4i4a8G00gX-ywIQtb1-ijKjn7OnjQg3UdufJOYwgYyE2w3ZosEUzoQWN67Rpr0qsNBCSXVnuHv1l7vXMIZL7xroXBrT30m216CSGQ6x71EMs4-O3z5EkNTcAX9_tJcvP-7ON8ma4-nF_MZ6tUcyFkWjFeZUIyXiuBhZSFQSUZcABpgMqpLqKFlZBTroosGmoKoXleZDlnuqZU8pPk4qBrHNyWvbct-G3pwJb7gvPrEvxgdYNlrjVFVldKGCZqnEowSqsqy6TZ1UXUenPQ6r27GzEMZWuDxqaBDt0YSk5jpjLnvIjQ139Bb93oY7Z7FFVccLZrbnJArSG-b7va7YyMy2BrdQy6jqGXM0lFzqY5V5HADoToegge64cfMVru5rH8Zx4j59V9K2PVonlg_BpA_hPMLeJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090934318</pqid></control><display><type>article</type><title>Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Xie, Xinyue ; Xue, Huiling ; Ma, Baoshan ; Guo, Xiaoqian ; Xia, Yanli ; Yang, Yuxia ; Xu, Ke ; Li, Ting ; Luo, Xia</creator><creatorcontrib>Xie, Xinyue ; Xue, Huiling ; Ma, Baoshan ; Guo, Xiaoqian ; Xia, Yanli ; Yang, Yuxia ; Xu, Ke ; Li, Ting ; Luo, Xia</creatorcontrib><description>This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of 'Daidai' and L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound-microwave procedure; and the ultrasound-microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29153498</identifier><identifier>PMID: 39124903</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetates ; Acyclic Monoterpenes - analysis ; Alcohol ; Analysis ; Chromatography ; Citrus - chemistry ; Citrus × aurantium ‘Daidai’ ; Citrus × aurantium L ; Cyclohexane Monoterpenes - analysis ; Distillation - methods ; Esters ; extraction process ; Flavonoids ; Food ; Gas Chromatography-Mass Spectrometry - methods ; HS-SPME-GC-MS ; Hydrocarbons ; hydrosol ; Mass spectrometry ; Medicine ; Monoterpenes - analysis ; Monoterpenes - isolation &amp; purification ; Odorants - analysis ; Oils &amp; fats ; Olefins ; Solid Phase Microextraction - methods ; Terpenes - analysis ; Terpenes - chemistry ; Ultrasonic imaging ; Volatile Organic Compounds - analysis ; Volatile Organic Compounds - chemistry ; Volatile Organic Compounds - isolation &amp; purification</subject><ispartof>Molecules (Basel, Switzerland), 2024-07, Vol.29 (15), p.3498</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3448-b13b24813f94e6886de981a3aa8da087c6903b4873962124d64c3562531cf0083</cites><orcidid>0000-0002-3751-0536 ; 0000-0002-6748-4535 ; 0000-0002-2014-164X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090934318/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090934318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,36987,44563,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Xinyue</creatorcontrib><creatorcontrib>Xue, Huiling</creatorcontrib><creatorcontrib>Ma, Baoshan</creatorcontrib><creatorcontrib>Guo, Xiaoqian</creatorcontrib><creatorcontrib>Xia, Yanli</creatorcontrib><creatorcontrib>Yang, Yuxia</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Luo, Xia</creatorcontrib><title>Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of 'Daidai' and L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound-microwave procedure; and the ultrasound-microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.</description><subject>Acetates</subject><subject>Acyclic Monoterpenes - analysis</subject><subject>Alcohol</subject><subject>Analysis</subject><subject>Chromatography</subject><subject>Citrus - chemistry</subject><subject>Citrus × aurantium ‘Daidai’</subject><subject>Citrus × aurantium L</subject><subject>Cyclohexane Monoterpenes - analysis</subject><subject>Distillation - methods</subject><subject>Esters</subject><subject>extraction process</subject><subject>Flavonoids</subject><subject>Food</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>HS-SPME-GC-MS</subject><subject>Hydrocarbons</subject><subject>hydrosol</subject><subject>Mass spectrometry</subject><subject>Medicine</subject><subject>Monoterpenes - analysis</subject><subject>Monoterpenes - isolation &amp; purification</subject><subject>Odorants - analysis</subject><subject>Oils &amp; fats</subject><subject>Olefins</subject><subject>Solid Phase Microextraction - methods</subject><subject>Terpenes - analysis</subject><subject>Terpenes - chemistry</subject><subject>Ultrasonic imaging</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatile Organic Compounds - chemistry</subject><subject>Volatile Organic Compounds - isolation &amp; purification</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtFu0zAUjRCIjcEH8IIs8TBeUuzYSe3H0o51UicmjfEa3dg3rackzuwE6JfwQfwSH4DbjoEA-cHW9TnH1-fcJHnJ6IRzRd-2rkE9NhgyxXIulHyUHDOR0ZRToR7_cT5KnoVwS2nGBMufJkdcsUwoyo-TH3PX9uBhsJ-RzDpotsEG4mqy3BrvgmvIJ9fE2wbJDuk67Ib9_dwOfgzk-zcyGz10gx1bcroAa8CeEujMfwGrCVl4i4a8G00gX-ywIQtb1-ijKjn7OnjQg3UdufJOYwgYyE2w3ZosEUzoQWN67Rpr0qsNBCSXVnuHv1l7vXMIZL7xroXBrT30m216CSGQ6x71EMs4-O3z5EkNTcAX9_tJcvP-7ON8ma4-nF_MZ6tUcyFkWjFeZUIyXiuBhZSFQSUZcABpgMqpLqKFlZBTroosGmoKoXleZDlnuqZU8pPk4qBrHNyWvbct-G3pwJb7gvPrEvxgdYNlrjVFVldKGCZqnEowSqsqy6TZ1UXUenPQ6r27GzEMZWuDxqaBDt0YSk5jpjLnvIjQ139Bb93oY7Z7FFVccLZrbnJArSG-b7va7YyMy2BrdQy6jqGXM0lFzqY5V5HADoToegge64cfMVru5rH8Zx4j59V9K2PVonlg_BpA_hPMLeJA</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Xie, Xinyue</creator><creator>Xue, Huiling</creator><creator>Ma, Baoshan</creator><creator>Guo, Xiaoqian</creator><creator>Xia, Yanli</creator><creator>Yang, Yuxia</creator><creator>Xu, Ke</creator><creator>Li, Ting</creator><creator>Luo, Xia</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3751-0536</orcidid><orcidid>https://orcid.org/0000-0002-6748-4535</orcidid><orcidid>https://orcid.org/0000-0002-2014-164X</orcidid></search><sort><creationdate>20240726</creationdate><title>Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry</title><author>Xie, Xinyue ; Xue, Huiling ; Ma, Baoshan ; Guo, Xiaoqian ; Xia, Yanli ; Yang, Yuxia ; Xu, Ke ; Li, Ting ; Luo, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3448-b13b24813f94e6886de981a3aa8da087c6903b4873962124d64c3562531cf0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetates</topic><topic>Acyclic Monoterpenes - analysis</topic><topic>Alcohol</topic><topic>Analysis</topic><topic>Chromatography</topic><topic>Citrus - chemistry</topic><topic>Citrus × aurantium ‘Daidai’</topic><topic>Citrus × aurantium L</topic><topic>Cyclohexane Monoterpenes - analysis</topic><topic>Distillation - methods</topic><topic>Esters</topic><topic>extraction process</topic><topic>Flavonoids</topic><topic>Food</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>HS-SPME-GC-MS</topic><topic>Hydrocarbons</topic><topic>hydrosol</topic><topic>Mass spectrometry</topic><topic>Medicine</topic><topic>Monoterpenes - analysis</topic><topic>Monoterpenes - isolation &amp; purification</topic><topic>Odorants - analysis</topic><topic>Oils &amp; fats</topic><topic>Olefins</topic><topic>Solid Phase Microextraction - methods</topic><topic>Terpenes - analysis</topic><topic>Terpenes - chemistry</topic><topic>Ultrasonic imaging</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatile Organic Compounds - chemistry</topic><topic>Volatile Organic Compounds - isolation &amp; purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xinyue</creatorcontrib><creatorcontrib>Xue, Huiling</creatorcontrib><creatorcontrib>Ma, Baoshan</creatorcontrib><creatorcontrib>Guo, Xiaoqian</creatorcontrib><creatorcontrib>Xia, Yanli</creatorcontrib><creatorcontrib>Yang, Yuxia</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Luo, Xia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xinyue</au><au>Xue, Huiling</au><au>Ma, Baoshan</au><au>Guo, Xiaoqian</au><au>Xia, Yanli</au><au>Yang, Yuxia</au><au>Xu, Ke</au><au>Li, Ting</au><au>Luo, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2024-07-26</date><risdate>2024</risdate><volume>29</volume><issue>15</issue><spage>3498</spage><pages>3498-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of 'Daidai' and L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound-microwave procedure; and the ultrasound-microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124903</pmid><doi>10.3390/molecules29153498</doi><orcidid>https://orcid.org/0000-0002-3751-0536</orcidid><orcidid>https://orcid.org/0000-0002-6748-4535</orcidid><orcidid>https://orcid.org/0000-0002-2014-164X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2024-07, Vol.29 (15), p.3498
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5cc0e1fb94d14fe78ad9c9b228d0e1f4
source Publicly Available Content (ProQuest); PubMed Central
subjects Acetates
Acyclic Monoterpenes - analysis
Alcohol
Analysis
Chromatography
Citrus - chemistry
Citrus × aurantium ‘Daidai’
Citrus × aurantium L
Cyclohexane Monoterpenes - analysis
Distillation - methods
Esters
extraction process
Flavonoids
Food
Gas Chromatography-Mass Spectrometry - methods
HS-SPME-GC-MS
Hydrocarbons
hydrosol
Mass spectrometry
Medicine
Monoterpenes - analysis
Monoterpenes - isolation & purification
Odorants - analysis
Oils & fats
Olefins
Solid Phase Microextraction - methods
Terpenes - analysis
Terpenes - chemistry
Ultrasonic imaging
Volatile Organic Compounds - analysis
Volatile Organic Compounds - chemistry
Volatile Organic Compounds - isolation & purification
title Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Hydrosol%20Volatile%20Components%20of%20Citrus%20%C3%97%20Aurantium%20'Daidai'%20and%20Citrus%20%C3%97%20Aurantium%20L.%20Dried%20Buds%20with%20Different%20Extraction%20Processes%20Using%20Headspace-Solid-Phase%20Microextraction%20with%20Gas%20Chromatography-Mass%20Spectrometry&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Xie,%20Xinyue&rft.date=2024-07-26&rft.volume=29&rft.issue=15&rft.spage=3498&rft.pages=3498-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29153498&rft_dat=%3Cgale_doaj_%3EA804517539%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3448-b13b24813f94e6886de981a3aa8da087c6903b4873962124d64c3562531cf0083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090934318&rft_id=info:pmid/39124903&rft_galeid=A804517539&rfr_iscdi=true