Loading…
An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model
A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG‐PBNP‐PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correla...
Saved in:
Published in: | Advanced NanoBiomed Research (Online) 2021-08, Vol.1 (8), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183 |
---|---|
cites | cdi_FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | |
container_title | Advanced NanoBiomed Research (Online) |
container_volume | 1 |
creator | Shukla, Anshi Cano-Mejia, Juliana Andricovich, Jaclyn Burga, Rachel A. Sweeney, Elizabeth E. Fernandes, Rohan |
description | A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG‐PBNP‐PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB‐related mortality. The efficacy of the CpG‐PBNP‐PTT nanoimmunotherapy in a clinically relevant, TH‐MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG‐PBNP‐PTT triggers thermal dose‐dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen‐presenting molecules. In vivo, intratumorally administered CpG‐PBNP‐PTT generates complete tumor regression and significantly higher long‐term survival compared to controls. Furthermore, CpG‐PBNP‐PTT‐treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell‐mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG‐PBNP‐PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG‐PBNP‐PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
The nanoimmunotherapy mediates thermal dose‐dependent immunogenic cell death and tumor cell priming in neuroblastoma cells, leading to T cell activation and memory. These effects elicit long‐term, tumor‐free survival, and rejection of tumor rechallenge in a single tumor model of TH‐MYCN neuroblastoma, and a potent abscopal effect, leading to slower progression of untreated tumors in a synchronous tumor model. |
doi_str_mv | 10.1002/anbr.202100021 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5cf7b1bafd3f4d918519ba149b88428c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5cf7b1bafd3f4d918519ba149b88428c</doaj_id><sourcerecordid>2564942775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183</originalsourceid><addsrcrecordid>eNqFks1uEzEQgFcIRKvSK2dLXLgk-G836wtSEgUaqQmoKgdOlu2dTR157WDvgnLjEbjyejwJThMVyoWL_-abz_ZoiuIlwWOCMX2jvI5jimne5OFJcU4rIUaC4cnTv9ZnxWVK2wNSEkbK-nlxxjhnJRH8vPg59WjhN9YDRGjQxzikZJVHMzcAWisfdir21jhIv77_mKmUmcOp7brBh_4Ootrt0cJZY_uEboIeUo-UzyKIyaYefI-W96wLG2uUQyvoQtwj65FCt1dZuvo8X6M1DDFop1IfOoVWoQH3onjWKpfg8jRfFJ_eLW7nV6PrD--X8-n1yJSEkBGvaKNBCEFrXpMSNGuI4qylDSWtojmMOQjGcxhTKkpTc1PqhnHMIOfX7KJYHr1NUFu5i7ZTcS-DsvL-IMSNPJVAlqadaKJV27CWN4LUuYZaES50XecLTHa9Pbp2g-6gMfn7UblH0scRb-_kJnyVNaspxWUWvD4JYvgyQOplZ5MB55SHMCRJy4oLTieTA_rqH3QbhuhzqSTDglSZZFWmxkfKxJBShPbhMQTLQxPJQxPJhybKCeKY8M062P-HltP17OZP7m8yW8yE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091656436</pqid></control><display><type>article</type><title>An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model</title><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Shukla, Anshi ; Cano-Mejia, Juliana ; Andricovich, Jaclyn ; Burga, Rachel A. ; Sweeney, Elizabeth E. ; Fernandes, Rohan</creator><creatorcontrib>Shukla, Anshi ; Cano-Mejia, Juliana ; Andricovich, Jaclyn ; Burga, Rachel A. ; Sweeney, Elizabeth E. ; Fernandes, Rohan</creatorcontrib><description>A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG‐PBNP‐PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB‐related mortality. The efficacy of the CpG‐PBNP‐PTT nanoimmunotherapy in a clinically relevant, TH‐MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG‐PBNP‐PTT triggers thermal dose‐dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen‐presenting molecules. In vivo, intratumorally administered CpG‐PBNP‐PTT generates complete tumor regression and significantly higher long‐term survival compared to controls. Furthermore, CpG‐PBNP‐PTT‐treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell‐mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG‐PBNP‐PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG‐PBNP‐PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
The nanoimmunotherapy mediates thermal dose‐dependent immunogenic cell death and tumor cell priming in neuroblastoma cells, leading to T cell activation and memory. These effects elicit long‐term, tumor‐free survival, and rejection of tumor rechallenge in a single tumor model of TH‐MYCN neuroblastoma, and a potent abscopal effect, leading to slower progression of untreated tumors in a synchronous tumor model.</description><identifier>ISSN: 2699-9307</identifier><identifier>EISSN: 2699-9307</identifier><identifier>DOI: 10.1002/anbr.202100021</identifier><identifier>PMID: 34435194</identifier><language>eng</language><publisher>Singapore: John Wiley & Sons, Inc</publisher><subject>abscopal effect ; Antigens ; Cancer therapies ; Cell death ; Chemotherapy ; CpG oligodeoxynucleotides ; Immunogenicity ; Immunological memory ; Immunology ; In vivo methods and tests ; Lasers ; Lymphocytes ; Lymphocytes T ; Memory cells ; MYCN amplification ; nanoimmunotherapy ; Nanoparticles ; Neuroblastoma ; Oligonucleotides ; photothermal therapy ; Pigments ; Prussian blue nanoparticles ; Regression models ; Remission (Medicine) ; Robustness ; Solid tumors ; Survival ; Tumors</subject><ispartof>Advanced NanoBiomed Research (Online), 2021-08, Vol.1 (8), p.n/a</ispartof><rights>2021 The Authors. Advanced NanoBiomed Research published by Wiley‐VCH GmbH</rights><rights>Copyright John Wiley & Sons, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183</citedby><cites>FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183</cites><orcidid>0000-0001-9439-4626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanbr.202100021$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091656436?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11542,25732,27903,27904,36991,36992,44569,46031,46455</link.rule.ids></links><search><creatorcontrib>Shukla, Anshi</creatorcontrib><creatorcontrib>Cano-Mejia, Juliana</creatorcontrib><creatorcontrib>Andricovich, Jaclyn</creatorcontrib><creatorcontrib>Burga, Rachel A.</creatorcontrib><creatorcontrib>Sweeney, Elizabeth E.</creatorcontrib><creatorcontrib>Fernandes, Rohan</creatorcontrib><title>An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model</title><title>Advanced NanoBiomed Research (Online)</title><description>A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG‐PBNP‐PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB‐related mortality. The efficacy of the CpG‐PBNP‐PTT nanoimmunotherapy in a clinically relevant, TH‐MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG‐PBNP‐PTT triggers thermal dose‐dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen‐presenting molecules. In vivo, intratumorally administered CpG‐PBNP‐PTT generates complete tumor regression and significantly higher long‐term survival compared to controls. Furthermore, CpG‐PBNP‐PTT‐treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell‐mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG‐PBNP‐PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG‐PBNP‐PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
The nanoimmunotherapy mediates thermal dose‐dependent immunogenic cell death and tumor cell priming in neuroblastoma cells, leading to T cell activation and memory. These effects elicit long‐term, tumor‐free survival, and rejection of tumor rechallenge in a single tumor model of TH‐MYCN neuroblastoma, and a potent abscopal effect, leading to slower progression of untreated tumors in a synchronous tumor model.</description><subject>abscopal effect</subject><subject>Antigens</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>CpG oligodeoxynucleotides</subject><subject>Immunogenicity</subject><subject>Immunological memory</subject><subject>Immunology</subject><subject>In vivo methods and tests</subject><subject>Lasers</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Memory cells</subject><subject>MYCN amplification</subject><subject>nanoimmunotherapy</subject><subject>Nanoparticles</subject><subject>Neuroblastoma</subject><subject>Oligonucleotides</subject><subject>photothermal therapy</subject><subject>Pigments</subject><subject>Prussian blue nanoparticles</subject><subject>Regression models</subject><subject>Remission (Medicine)</subject><subject>Robustness</subject><subject>Solid tumors</subject><subject>Survival</subject><subject>Tumors</subject><issn>2699-9307</issn><issn>2699-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEQgFcIRKvSK2dLXLgk-G836wtSEgUaqQmoKgdOlu2dTR157WDvgnLjEbjyejwJThMVyoWL_-abz_ZoiuIlwWOCMX2jvI5jimne5OFJcU4rIUaC4cnTv9ZnxWVK2wNSEkbK-nlxxjhnJRH8vPg59WjhN9YDRGjQxzikZJVHMzcAWisfdir21jhIv77_mKmUmcOp7brBh_4Ootrt0cJZY_uEboIeUo-UzyKIyaYefI-W96wLG2uUQyvoQtwj65FCt1dZuvo8X6M1DDFop1IfOoVWoQH3onjWKpfg8jRfFJ_eLW7nV6PrD--X8-n1yJSEkBGvaKNBCEFrXpMSNGuI4qylDSWtojmMOQjGcxhTKkpTc1PqhnHMIOfX7KJYHr1NUFu5i7ZTcS-DsvL-IMSNPJVAlqadaKJV27CWN4LUuYZaES50XecLTHa9Pbp2g-6gMfn7UblH0scRb-_kJnyVNaspxWUWvD4JYvgyQOplZ5MB55SHMCRJy4oLTieTA_rqH3QbhuhzqSTDglSZZFWmxkfKxJBShPbhMQTLQxPJQxPJhybKCeKY8M062P-HltP17OZP7m8yW8yE</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Shukla, Anshi</creator><creator>Cano-Mejia, Juliana</creator><creator>Andricovich, Jaclyn</creator><creator>Burga, Rachel A.</creator><creator>Sweeney, Elizabeth E.</creator><creator>Fernandes, Rohan</creator><general>John Wiley & Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9439-4626</orcidid></search><sort><creationdate>202108</creationdate><title>An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model</title><author>Shukla, Anshi ; Cano-Mejia, Juliana ; Andricovich, Jaclyn ; Burga, Rachel A. ; Sweeney, Elizabeth E. ; Fernandes, Rohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>abscopal effect</topic><topic>Antigens</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>CpG oligodeoxynucleotides</topic><topic>Immunogenicity</topic><topic>Immunological memory</topic><topic>Immunology</topic><topic>In vivo methods and tests</topic><topic>Lasers</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Memory cells</topic><topic>MYCN amplification</topic><topic>nanoimmunotherapy</topic><topic>Nanoparticles</topic><topic>Neuroblastoma</topic><topic>Oligonucleotides</topic><topic>photothermal therapy</topic><topic>Pigments</topic><topic>Prussian blue nanoparticles</topic><topic>Regression models</topic><topic>Remission (Medicine)</topic><topic>Robustness</topic><topic>Solid tumors</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Anshi</creatorcontrib><creatorcontrib>Cano-Mejia, Juliana</creatorcontrib><creatorcontrib>Andricovich, Jaclyn</creatorcontrib><creatorcontrib>Burga, Rachel A.</creatorcontrib><creatorcontrib>Sweeney, Elizabeth E.</creatorcontrib><creatorcontrib>Fernandes, Rohan</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced NanoBiomed Research (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Anshi</au><au>Cano-Mejia, Juliana</au><au>Andricovich, Jaclyn</au><au>Burga, Rachel A.</au><au>Sweeney, Elizabeth E.</au><au>Fernandes, Rohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model</atitle><jtitle>Advanced NanoBiomed Research (Online)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>1</volume><issue>8</issue><epage>n/a</epage><issn>2699-9307</issn><eissn>2699-9307</eissn><abstract>A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG‐PBNP‐PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB‐related mortality. The efficacy of the CpG‐PBNP‐PTT nanoimmunotherapy in a clinically relevant, TH‐MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG‐PBNP‐PTT triggers thermal dose‐dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen‐presenting molecules. In vivo, intratumorally administered CpG‐PBNP‐PTT generates complete tumor regression and significantly higher long‐term survival compared to controls. Furthermore, CpG‐PBNP‐PTT‐treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell‐mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG‐PBNP‐PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG‐PBNP‐PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
The nanoimmunotherapy mediates thermal dose‐dependent immunogenic cell death and tumor cell priming in neuroblastoma cells, leading to T cell activation and memory. These effects elicit long‐term, tumor‐free survival, and rejection of tumor rechallenge in a single tumor model of TH‐MYCN neuroblastoma, and a potent abscopal effect, leading to slower progression of untreated tumors in a synchronous tumor model.</abstract><cop>Singapore</cop><pub>John Wiley & Sons, Inc</pub><pmid>34435194</pmid><doi>10.1002/anbr.202100021</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9439-4626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2699-9307 |
ispartof | Advanced NanoBiomed Research (Online), 2021-08, Vol.1 (8), p.n/a |
issn | 2699-9307 2699-9307 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5cf7b1bafd3f4d918519ba149b88428c |
source | Publicly Available Content (ProQuest); Wiley Open Access |
subjects | abscopal effect Antigens Cancer therapies Cell death Chemotherapy CpG oligodeoxynucleotides Immunogenicity Immunological memory Immunology In vivo methods and tests Lasers Lymphocytes Lymphocytes T Memory cells MYCN amplification nanoimmunotherapy Nanoparticles Neuroblastoma Oligonucleotides photothermal therapy Pigments Prussian blue nanoparticles Regression models Remission (Medicine) Robustness Solid tumors Survival Tumors |
title | An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Engineered%20Prussian%20Blue%20Nanoparticles%E2%80%90Based%20Nanoimmunotherapy%20Elicits%20Robust%20and%20Persistent%20Immunological%20Memory%20in%20a%20TH%E2%80%90MYCN%20Neuroblastoma%20Model&rft.jtitle=Advanced%20NanoBiomed%20Research%20(Online)&rft.au=Shukla,%20Anshi&rft.date=2021-08&rft.volume=1&rft.issue=8&rft.epage=n/a&rft.issn=2699-9307&rft.eissn=2699-9307&rft_id=info:doi/10.1002/anbr.202100021&rft_dat=%3Cproquest_doaj_%3E2564942775%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5111-462dbe999284815eb3d1a43f2d21fa246204e93428402295c84c5bd3403e11183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091656436&rft_id=info:pmid/34435194&rfr_iscdi=true |