Loading…
H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System
To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology...
Saved in:
Published in: | Applied sciences 2018-10, Vol.8 (10), p.1748 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653 |
container_end_page | |
container_issue | 10 |
container_start_page | 1748 |
container_title | Applied sciences |
container_volume | 8 |
creator | Yan, Wenxu Sheng, Lina Xu, Dezhi Yang, Weilin Liu, Qian |
description | To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective. |
doi_str_mv | 10.3390/app8101748 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6</doaj_id><sourcerecordid>2250203384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</originalsourceid><addsrcrecordid>eNpNkd1Kw0AQhYMoWGpvfIIF74To_mWTXJbS2kJFsXq9bPanpqTZONlS8gY-hQ_nk5haUedmDsPHmWFOFF0SfMNYjm9V02QEk5RnJ9GA4lTEjJP09J8-j0Ztu8F95YT17CDy88_3D_Tki10b0NIrg2Zg33a21h2a-DqAr5DzgO53VSjjMViFFnWwoH1dWx2sQY9-bwGtujbYLdqX4RXNuwJKg6a1hXWHVsGDWtsf4iI6c6pq7einD6OX2fR5Mo-XD3eLyXgZayZIiIXJqUldJqghhgucFs7kjBtrnCkyqgV2zPEkz5JCiV5QRnSO81wTpwURCRtGi6Ov8WojGyi3CjrpVSm_Bx7WUkEodWVlYrDhnCcHR065znQiNFFcFY4ViRa919XRqwHfv6YNcuN3UPfnS0oTTDFjGe-p6yOlwbctWPe7lWB5yEf-5cO-AOXDg6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250203384</pqid></control><display><type>article</type><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><source>Publicly Available Content (ProQuest)</source><creator>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</creator><creatorcontrib>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</creatorcontrib><description>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8101748</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Computer simulation ; Control systems design ; Control theory ; Controllers ; Energy management ; Energy storage ; Frequency control ; Frequency stability ; Fuel cells ; H-infinity control ; hybrid energy storage system ; H∞ robust control ; linear matrix inequality ; Load ; load frequency control ; Mathematical models ; Matrix methods ; multi-area interconnected power system ; Robust control ; State feedback ; Topology ; Wind power</subject><ispartof>Applied sciences, 2018-10, Vol.8 (10), p.1748</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</citedby><cites>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250203384/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250203384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yan, Wenxu</creatorcontrib><creatorcontrib>Sheng, Lina</creatorcontrib><creatorcontrib>Xu, Dezhi</creatorcontrib><creatorcontrib>Yang, Weilin</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><title>Applied sciences</title><description>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Frequency control</subject><subject>Frequency stability</subject><subject>Fuel cells</subject><subject>H-infinity control</subject><subject>hybrid energy storage system</subject><subject>H∞ robust control</subject><subject>linear matrix inequality</subject><subject>Load</subject><subject>load frequency control</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>multi-area interconnected power system</subject><subject>Robust control</subject><subject>State feedback</subject><subject>Topology</subject><subject>Wind power</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1Kw0AQhYMoWGpvfIIF74To_mWTXJbS2kJFsXq9bPanpqTZONlS8gY-hQ_nk5haUedmDsPHmWFOFF0SfMNYjm9V02QEk5RnJ9GA4lTEjJP09J8-j0Ztu8F95YT17CDy88_3D_Tki10b0NIrg2Zg33a21h2a-DqAr5DzgO53VSjjMViFFnWwoH1dWx2sQY9-bwGtujbYLdqX4RXNuwJKg6a1hXWHVsGDWtsf4iI6c6pq7einD6OX2fR5Mo-XD3eLyXgZayZIiIXJqUldJqghhgucFs7kjBtrnCkyqgV2zPEkz5JCiV5QRnSO81wTpwURCRtGi6Ov8WojGyi3CjrpVSm_Bx7WUkEodWVlYrDhnCcHR065znQiNFFcFY4ViRa919XRqwHfv6YNcuN3UPfnS0oTTDFjGe-p6yOlwbctWPe7lWB5yEf-5cO-AOXDg6o</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yan, Wenxu</creator><creator>Sheng, Lina</creator><creator>Xu, Dezhi</creator><creator>Yang, Weilin</creator><creator>Liu, Qian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20181001</creationdate><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><author>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Frequency control</topic><topic>Frequency stability</topic><topic>Fuel cells</topic><topic>H-infinity control</topic><topic>hybrid energy storage system</topic><topic>H∞ robust control</topic><topic>linear matrix inequality</topic><topic>Load</topic><topic>load frequency control</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>multi-area interconnected power system</topic><topic>Robust control</topic><topic>State feedback</topic><topic>Topology</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenxu</creatorcontrib><creatorcontrib>Sheng, Lina</creatorcontrib><creatorcontrib>Xu, Dezhi</creatorcontrib><creatorcontrib>Yang, Weilin</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenxu</au><au>Sheng, Lina</au><au>Xu, Dezhi</au><au>Yang, Weilin</au><au>Liu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</atitle><jtitle>Applied sciences</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>1748</spage><pages>1748-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8101748</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2018-10, Vol.8 (10), p.1748 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Computer simulation Control systems design Control theory Controllers Energy management Energy storage Frequency control Frequency stability Fuel cells H-infinity control hybrid energy storage system H∞ robust control linear matrix inequality Load load frequency control Mathematical models Matrix methods multi-area interconnected power system Robust control State feedback Topology Wind power |
title | H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%E2%88%9E%20Robust%20Load%20Frequency%20Control%20for%20Multi-Area%20Interconnected%20Power%20System%20with%20Hybrid%20Energy%20Storage%20System&rft.jtitle=Applied%20sciences&rft.au=Yan,%20Wenxu&rft.date=2018-10-01&rft.volume=8&rft.issue=10&rft.spage=1748&rft.pages=1748-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8101748&rft_dat=%3Cproquest_doaj_%3E2250203384%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250203384&rft_id=info:pmid/&rfr_iscdi=true |