Loading…

H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System

To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-10, Vol.8 (10), p.1748
Main Authors: Yan, Wenxu, Sheng, Lina, Xu, Dezhi, Yang, Weilin, Liu, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653
cites cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653
container_end_page
container_issue 10
container_start_page 1748
container_title Applied sciences
container_volume 8
creator Yan, Wenxu
Sheng, Lina
Xu, Dezhi
Yang, Weilin
Liu, Qian
description To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.
doi_str_mv 10.3390/app8101748
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6</doaj_id><sourcerecordid>2250203384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</originalsourceid><addsrcrecordid>eNpNkd1Kw0AQhYMoWGpvfIIF74To_mWTXJbS2kJFsXq9bPanpqTZONlS8gY-hQ_nk5haUedmDsPHmWFOFF0SfMNYjm9V02QEk5RnJ9GA4lTEjJP09J8-j0Ztu8F95YT17CDy88_3D_Tki10b0NIrg2Zg33a21h2a-DqAr5DzgO53VSjjMViFFnWwoH1dWx2sQY9-bwGtujbYLdqX4RXNuwJKg6a1hXWHVsGDWtsf4iI6c6pq7einD6OX2fR5Mo-XD3eLyXgZayZIiIXJqUldJqghhgucFs7kjBtrnCkyqgV2zPEkz5JCiV5QRnSO81wTpwURCRtGi6Ov8WojGyi3CjrpVSm_Bx7WUkEodWVlYrDhnCcHR065znQiNFFcFY4ViRa919XRqwHfv6YNcuN3UPfnS0oTTDFjGe-p6yOlwbctWPe7lWB5yEf-5cO-AOXDg6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250203384</pqid></control><display><type>article</type><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><source>Publicly Available Content (ProQuest)</source><creator>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</creator><creatorcontrib>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</creatorcontrib><description>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8101748</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Computer simulation ; Control systems design ; Control theory ; Controllers ; Energy management ; Energy storage ; Frequency control ; Frequency stability ; Fuel cells ; H-infinity control ; hybrid energy storage system ; H∞ robust control ; linear matrix inequality ; Load ; load frequency control ; Mathematical models ; Matrix methods ; multi-area interconnected power system ; Robust control ; State feedback ; Topology ; Wind power</subject><ispartof>Applied sciences, 2018-10, Vol.8 (10), p.1748</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</citedby><cites>FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250203384/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250203384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yan, Wenxu</creatorcontrib><creatorcontrib>Sheng, Lina</creatorcontrib><creatorcontrib>Xu, Dezhi</creatorcontrib><creatorcontrib>Yang, Weilin</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><title>Applied sciences</title><description>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Frequency control</subject><subject>Frequency stability</subject><subject>Fuel cells</subject><subject>H-infinity control</subject><subject>hybrid energy storage system</subject><subject>H∞ robust control</subject><subject>linear matrix inequality</subject><subject>Load</subject><subject>load frequency control</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>multi-area interconnected power system</subject><subject>Robust control</subject><subject>State feedback</subject><subject>Topology</subject><subject>Wind power</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1Kw0AQhYMoWGpvfIIF74To_mWTXJbS2kJFsXq9bPanpqTZONlS8gY-hQ_nk5haUedmDsPHmWFOFF0SfMNYjm9V02QEk5RnJ9GA4lTEjJP09J8-j0Ztu8F95YT17CDy88_3D_Tki10b0NIrg2Zg33a21h2a-DqAr5DzgO53VSjjMViFFnWwoH1dWx2sQY9-bwGtujbYLdqX4RXNuwJKg6a1hXWHVsGDWtsf4iI6c6pq7einD6OX2fR5Mo-XD3eLyXgZayZIiIXJqUldJqghhgucFs7kjBtrnCkyqgV2zPEkz5JCiV5QRnSO81wTpwURCRtGi6Ov8WojGyi3CjrpVSm_Bx7WUkEodWVlYrDhnCcHR065znQiNFFcFY4ViRa919XRqwHfv6YNcuN3UPfnS0oTTDFjGe-p6yOlwbctWPe7lWB5yEf-5cO-AOXDg6o</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yan, Wenxu</creator><creator>Sheng, Lina</creator><creator>Xu, Dezhi</creator><creator>Yang, Weilin</creator><creator>Liu, Qian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20181001</creationdate><title>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</title><author>Yan, Wenxu ; Sheng, Lina ; Xu, Dezhi ; Yang, Weilin ; Liu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Frequency control</topic><topic>Frequency stability</topic><topic>Fuel cells</topic><topic>H-infinity control</topic><topic>hybrid energy storage system</topic><topic>H∞ robust control</topic><topic>linear matrix inequality</topic><topic>Load</topic><topic>load frequency control</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>multi-area interconnected power system</topic><topic>Robust control</topic><topic>State feedback</topic><topic>Topology</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenxu</creatorcontrib><creatorcontrib>Sheng, Lina</creatorcontrib><creatorcontrib>Xu, Dezhi</creatorcontrib><creatorcontrib>Yang, Weilin</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenxu</au><au>Sheng, Lina</au><au>Xu, Dezhi</au><au>Yang, Weilin</au><au>Liu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System</atitle><jtitle>Applied sciences</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>1748</spage><pages>1748-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8101748</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2018-10, Vol.8 (10), p.1748
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d0d4445f3f4424c8c56c1a4abf3b5c6
source Publicly Available Content (ProQuest)
subjects Algorithms
Computer simulation
Control systems design
Control theory
Controllers
Energy management
Energy storage
Frequency control
Frequency stability
Fuel cells
H-infinity control
hybrid energy storage system
H∞ robust control
linear matrix inequality
Load
load frequency control
Mathematical models
Matrix methods
multi-area interconnected power system
Robust control
State feedback
Topology
Wind power
title H∞ Robust Load Frequency Control for Multi-Area Interconnected Power System with Hybrid Energy Storage System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%E2%88%9E%20Robust%20Load%20Frequency%20Control%20for%20Multi-Area%20Interconnected%20Power%20System%20with%20Hybrid%20Energy%20Storage%20System&rft.jtitle=Applied%20sciences&rft.au=Yan,%20Wenxu&rft.date=2018-10-01&rft.volume=8&rft.issue=10&rft.spage=1748&rft.pages=1748-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8101748&rft_dat=%3Cproquest_doaj_%3E2250203384%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6d92d7f862d1d4607bfd934dedfdb82c60f3f45985ba6f45231c9099c1fc61653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250203384&rft_id=info:pmid/&rfr_iscdi=true