Loading…
Non-linear hydrologic organization
We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In...
Saved in:
Published in: | Nonlinear processes in geophysics 2021-10, Vol.28 (4), p.599-614 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893 |
container_end_page | 614 |
container_issue | 4 |
container_start_page | 599 |
container_title | Nonlinear processes in geophysics |
container_volume | 28 |
creator | Hunt, Allen Faybishenko, Boris Ghanbarian, Behzad |
description | We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent. |
doi_str_mv | 10.5194/npg-28-599-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680174371</galeid><doaj_id>oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6</doaj_id><sourcerecordid>A680174371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</originalsourceid><addsrcrecordid>eNptkUtrWzEQhS-lgebRdbchXWVxE711tQyhaQ2hhTzWYqw7upGxJVeSIemvrxyXEEPRYsTwzTnSnK77QsmFpEZcxvXUs6GXxvSMMPqhO6SK6F4boT6-u3_qjkpZEEKFVOywO_uZYr8MESGfPr2MOS3TFNxpyhPE8AdqSPGkO_CwLPj5Xz3uHm--PVz_6G9_fZ9dX932ThJRe2EkH51CkMII6Yn0CjkIAFRGjZQ45EjmTBstQTOkalAEjNRzdBToYPhxN9vpjgkWdp3DCvKLTRDsa6M9yUKuwS3RypGOhjPqJRMCPM4JEV4ByIGPks1V0zrbaaVSgy0uVHRPLsWIrtpmZijbQl930Dqn3xss1S7SJsf2R8vkIJnmUryjJmjOIfpUM7hVKM5eqYFQLbimjbr4D9XOiKvQjNGH1t8bON8baEzF5zrBphQ7u7_bZy93rMuplIz-bTuU2G34toVv2WBb-HYbPv8LN4udQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585273546</pqid></control><display><type>article</type><title>Non-linear hydrologic organization</title><source>Publicly Available Content (ProQuest)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad</creator><creatorcontrib>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</description><identifier>ISSN: 1607-7946</identifier><identifier>ISSN: 1023-5809</identifier><identifier>EISSN: 1607-7946</identifier><identifier>DOI: 10.5194/npg-28-599-2021</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Analysis ; Depth ; Drainage basins ; Drainage network ; Drainage patterns ; Flow paths ; Flow rates ; Flow velocity ; Fractals ; GEOSCIENCES ; Groundwater ; Hydrologic processes ; Hydrologic sciences ; Hydrology ; Precipitation ; River networks ; Scaling ; Soil ; Soil depth ; Soil formation ; Soils ; Storm seepage ; Subsurface flow ; Vegetation ; Vegetation growth ; Velocity</subject><ispartof>Nonlinear processes in geophysics, 2021-10, Vol.28 (4), p.599-614</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</citedby><cites>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2585273546/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2585273546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1899126$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, Allen</creatorcontrib><creatorcontrib>Faybishenko, Boris</creatorcontrib><creatorcontrib>Ghanbarian, Behzad</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Non-linear hydrologic organization</title><title>Nonlinear processes in geophysics</title><description>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</description><subject>Analysis</subject><subject>Depth</subject><subject>Drainage basins</subject><subject>Drainage network</subject><subject>Drainage patterns</subject><subject>Flow paths</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fractals</subject><subject>GEOSCIENCES</subject><subject>Groundwater</subject><subject>Hydrologic processes</subject><subject>Hydrologic sciences</subject><subject>Hydrology</subject><subject>Precipitation</subject><subject>River networks</subject><subject>Scaling</subject><subject>Soil</subject><subject>Soil depth</subject><subject>Soil formation</subject><subject>Soils</subject><subject>Storm seepage</subject><subject>Subsurface flow</subject><subject>Vegetation</subject><subject>Vegetation growth</subject><subject>Velocity</subject><issn>1607-7946</issn><issn>1023-5809</issn><issn>1607-7946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUtrWzEQhS-lgebRdbchXWVxE711tQyhaQ2hhTzWYqw7upGxJVeSIemvrxyXEEPRYsTwzTnSnK77QsmFpEZcxvXUs6GXxvSMMPqhO6SK6F4boT6-u3_qjkpZEEKFVOywO_uZYr8MESGfPr2MOS3TFNxpyhPE8AdqSPGkO_CwLPj5Xz3uHm--PVz_6G9_fZ9dX932ThJRe2EkH51CkMII6Yn0CjkIAFRGjZQ45EjmTBstQTOkalAEjNRzdBToYPhxN9vpjgkWdp3DCvKLTRDsa6M9yUKuwS3RypGOhjPqJRMCPM4JEV4ByIGPks1V0zrbaaVSgy0uVHRPLsWIrtpmZijbQl930Dqn3xss1S7SJsf2R8vkIJnmUryjJmjOIfpUM7hVKM5eqYFQLbimjbr4D9XOiKvQjNGH1t8bON8baEzF5zrBphQ7u7_bZy93rMuplIz-bTuU2G34toVv2WBb-HYbPv8LN4udQQ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Hunt, Allen</creator><creator>Faybishenko, Boris</creator><creator>Ghanbarian, Behzad</creator><general>Copernicus GmbH</general><general>Copernicus Publications, EGU</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20211025</creationdate><title>Non-linear hydrologic organization</title><author>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Depth</topic><topic>Drainage basins</topic><topic>Drainage network</topic><topic>Drainage patterns</topic><topic>Flow paths</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fractals</topic><topic>GEOSCIENCES</topic><topic>Groundwater</topic><topic>Hydrologic processes</topic><topic>Hydrologic sciences</topic><topic>Hydrology</topic><topic>Precipitation</topic><topic>River networks</topic><topic>Scaling</topic><topic>Soil</topic><topic>Soil depth</topic><topic>Soil formation</topic><topic>Soils</topic><topic>Storm seepage</topic><topic>Subsurface flow</topic><topic>Vegetation</topic><topic>Vegetation growth</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Allen</creatorcontrib><creatorcontrib>Faybishenko, Boris</creatorcontrib><creatorcontrib>Ghanbarian, Behzad</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nonlinear processes in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Allen</au><au>Faybishenko, Boris</au><au>Ghanbarian, Behzad</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear hydrologic organization</atitle><jtitle>Nonlinear processes in geophysics</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>599</spage><epage>614</epage><pages>599-614</pages><issn>1607-7946</issn><issn>1023-5809</issn><eissn>1607-7946</eissn><abstract>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/npg-28-599-2021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-7946 |
ispartof | Nonlinear processes in geophysics, 2021-10, Vol.28 (4), p.599-614 |
issn | 1607-7946 1023-5809 1607-7946 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6 |
source | Publicly Available Content (ProQuest); EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Depth Drainage basins Drainage network Drainage patterns Flow paths Flow rates Flow velocity Fractals GEOSCIENCES Groundwater Hydrologic processes Hydrologic sciences Hydrology Precipitation River networks Scaling Soil Soil depth Soil formation Soils Storm seepage Subsurface flow Vegetation Vegetation growth Velocity |
title | Non-linear hydrologic organization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20hydrologic%20organization&rft.jtitle=Nonlinear%20processes%20in%20geophysics&rft.au=Hunt,%20Allen&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-10-25&rft.volume=28&rft.issue=4&rft.spage=599&rft.epage=614&rft.pages=599-614&rft.issn=1607-7946&rft.eissn=1607-7946&rft_id=info:doi/10.5194/npg-28-599-2021&rft_dat=%3Cgale_doaj_%3EA680174371%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585273546&rft_id=info:pmid/&rft_galeid=A680174371&rfr_iscdi=true |