Loading…

Non-linear hydrologic organization

We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear processes in geophysics 2021-10, Vol.28 (4), p.599-614
Main Authors: Hunt, Allen, Faybishenko, Boris, Ghanbarian, Behzad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893
cites cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893
container_end_page 614
container_issue 4
container_start_page 599
container_title Nonlinear processes in geophysics
container_volume 28
creator Hunt, Allen
Faybishenko, Boris
Ghanbarian, Behzad
description We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.
doi_str_mv 10.5194/npg-28-599-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680174371</galeid><doaj_id>oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6</doaj_id><sourcerecordid>A680174371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</originalsourceid><addsrcrecordid>eNptkUtrWzEQhS-lgebRdbchXWVxE711tQyhaQ2hhTzWYqw7upGxJVeSIemvrxyXEEPRYsTwzTnSnK77QsmFpEZcxvXUs6GXxvSMMPqhO6SK6F4boT6-u3_qjkpZEEKFVOywO_uZYr8MESGfPr2MOS3TFNxpyhPE8AdqSPGkO_CwLPj5Xz3uHm--PVz_6G9_fZ9dX932ThJRe2EkH51CkMII6Yn0CjkIAFRGjZQ45EjmTBstQTOkalAEjNRzdBToYPhxN9vpjgkWdp3DCvKLTRDsa6M9yUKuwS3RypGOhjPqJRMCPM4JEV4ByIGPks1V0zrbaaVSgy0uVHRPLsWIrtpmZijbQl930Dqn3xss1S7SJsf2R8vkIJnmUryjJmjOIfpUM7hVKM5eqYFQLbimjbr4D9XOiKvQjNGH1t8bON8baEzF5zrBphQ7u7_bZy93rMuplIz-bTuU2G34toVv2WBb-HYbPv8LN4udQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585273546</pqid></control><display><type>article</type><title>Non-linear hydrologic organization</title><source>Publicly Available Content (ProQuest)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad</creator><creatorcontrib>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</description><identifier>ISSN: 1607-7946</identifier><identifier>ISSN: 1023-5809</identifier><identifier>EISSN: 1607-7946</identifier><identifier>DOI: 10.5194/npg-28-599-2021</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Analysis ; Depth ; Drainage basins ; Drainage network ; Drainage patterns ; Flow paths ; Flow rates ; Flow velocity ; Fractals ; GEOSCIENCES ; Groundwater ; Hydrologic processes ; Hydrologic sciences ; Hydrology ; Precipitation ; River networks ; Scaling ; Soil ; Soil depth ; Soil formation ; Soils ; Storm seepage ; Subsurface flow ; Vegetation ; Vegetation growth ; Velocity</subject><ispartof>Nonlinear processes in geophysics, 2021-10, Vol.28 (4), p.599-614</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</citedby><cites>FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2585273546/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2585273546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1899126$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, Allen</creatorcontrib><creatorcontrib>Faybishenko, Boris</creatorcontrib><creatorcontrib>Ghanbarian, Behzad</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Non-linear hydrologic organization</title><title>Nonlinear processes in geophysics</title><description>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</description><subject>Analysis</subject><subject>Depth</subject><subject>Drainage basins</subject><subject>Drainage network</subject><subject>Drainage patterns</subject><subject>Flow paths</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fractals</subject><subject>GEOSCIENCES</subject><subject>Groundwater</subject><subject>Hydrologic processes</subject><subject>Hydrologic sciences</subject><subject>Hydrology</subject><subject>Precipitation</subject><subject>River networks</subject><subject>Scaling</subject><subject>Soil</subject><subject>Soil depth</subject><subject>Soil formation</subject><subject>Soils</subject><subject>Storm seepage</subject><subject>Subsurface flow</subject><subject>Vegetation</subject><subject>Vegetation growth</subject><subject>Velocity</subject><issn>1607-7946</issn><issn>1023-5809</issn><issn>1607-7946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUtrWzEQhS-lgebRdbchXWVxE711tQyhaQ2hhTzWYqw7upGxJVeSIemvrxyXEEPRYsTwzTnSnK77QsmFpEZcxvXUs6GXxvSMMPqhO6SK6F4boT6-u3_qjkpZEEKFVOywO_uZYr8MESGfPr2MOS3TFNxpyhPE8AdqSPGkO_CwLPj5Xz3uHm--PVz_6G9_fZ9dX932ThJRe2EkH51CkMII6Yn0CjkIAFRGjZQ45EjmTBstQTOkalAEjNRzdBToYPhxN9vpjgkWdp3DCvKLTRDsa6M9yUKuwS3RypGOhjPqJRMCPM4JEV4ByIGPks1V0zrbaaVSgy0uVHRPLsWIrtpmZijbQl930Dqn3xss1S7SJsf2R8vkIJnmUryjJmjOIfpUM7hVKM5eqYFQLbimjbr4D9XOiKvQjNGH1t8bON8baEzF5zrBphQ7u7_bZy93rMuplIz-bTuU2G34toVv2WBb-HYbPv8LN4udQQ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Hunt, Allen</creator><creator>Faybishenko, Boris</creator><creator>Ghanbarian, Behzad</creator><general>Copernicus GmbH</general><general>Copernicus Publications, EGU</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20211025</creationdate><title>Non-linear hydrologic organization</title><author>Hunt, Allen ; Faybishenko, Boris ; Ghanbarian, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Depth</topic><topic>Drainage basins</topic><topic>Drainage network</topic><topic>Drainage patterns</topic><topic>Flow paths</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fractals</topic><topic>GEOSCIENCES</topic><topic>Groundwater</topic><topic>Hydrologic processes</topic><topic>Hydrologic sciences</topic><topic>Hydrology</topic><topic>Precipitation</topic><topic>River networks</topic><topic>Scaling</topic><topic>Soil</topic><topic>Soil depth</topic><topic>Soil formation</topic><topic>Soils</topic><topic>Storm seepage</topic><topic>Subsurface flow</topic><topic>Vegetation</topic><topic>Vegetation growth</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Allen</creatorcontrib><creatorcontrib>Faybishenko, Boris</creatorcontrib><creatorcontrib>Ghanbarian, Behzad</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nonlinear processes in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Allen</au><au>Faybishenko, Boris</au><au>Ghanbarian, Behzad</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear hydrologic organization</atitle><jtitle>Nonlinear processes in geophysics</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>599</spage><epage>614</epage><pages>599-614</pages><issn>1607-7946</issn><issn>1023-5809</issn><eissn>1607-7946</eissn><abstract>We revisit three variants of the well-known Stommel diagrams that have been used to summarize knowledge of characteristic scales in time and space of some important hydrologic phenomena and modified these diagrams focusing on spatiotemporal scaling analyses of the underlying hydrologic processes. In the present paper we focus on soil formation, vegetation growth, and drainage network organization. We use existing scaling relationships for vegetation growth and soil formation, both of which refer to the same fundamental length and timescales defining flow rates at the pore scale but different powers of the power law relating time and space. The principle of a hierarchical organization of optimal subsurface flow paths could underlie both root lateral spread (RLS) of vegetation and drainage basin organization. To assess the applicability of scaling, and to extend the Stommel diagrams, data for soil depth, vegetation root lateral spread, and drainage basin length have been accessed. The new data considered here include timescales out to 150 Myr that correspond to depths of up to 240 m and horizontal length scales up to 6400 km and probe the limits of drainage basin development in time, depth, and horizontal extent.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/npg-28-599-2021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-7946
ispartof Nonlinear processes in geophysics, 2021-10, Vol.28 (4), p.599-614
issn 1607-7946
1023-5809
1607-7946
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d1d9321f5244afeb004f6aa583d52b6
source Publicly Available Content (ProQuest); EZB-FREE-00999 freely available EZB journals
subjects Analysis
Depth
Drainage basins
Drainage network
Drainage patterns
Flow paths
Flow rates
Flow velocity
Fractals
GEOSCIENCES
Groundwater
Hydrologic processes
Hydrologic sciences
Hydrology
Precipitation
River networks
Scaling
Soil
Soil depth
Soil formation
Soils
Storm seepage
Subsurface flow
Vegetation
Vegetation growth
Velocity
title Non-linear hydrologic organization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20hydrologic%20organization&rft.jtitle=Nonlinear%20processes%20in%20geophysics&rft.au=Hunt,%20Allen&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-10-25&rft.volume=28&rft.issue=4&rft.spage=599&rft.epage=614&rft.pages=599-614&rft.issn=1607-7946&rft.eissn=1607-7946&rft_id=info:doi/10.5194/npg-28-599-2021&rft_dat=%3Cgale_doaj_%3EA680174371%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-4953dc6ea54945f05f6e3a4aae696d10ce3e0b27975a72e16860a957bec1a1893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585273546&rft_id=info:pmid/&rft_galeid=A680174371&rfr_iscdi=true