Loading…

Evaluation of the Aerodynamic Effect of a Smooth Rounded Roof on Crosswind Stability of a Train by Wind Tunnel Tests

The advent of high-speed trains led to new issues and constraints for railway network manufacturers and operators. This is the case of crosswind effect, that occurs when train is running in strong wind conditions. The combination of train speed and wind speed generates a relative flow that affects t...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-01, Vol.13 (1), p.232
Main Authors: Araya Reyes, Carlos Esteban, Brambilla, Elia, Tomasini, Gisella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advent of high-speed trains led to new issues and constraints for railway network manufacturers and operators. This is the case of crosswind effect, that occurs when train is running in strong wind conditions. The combination of train speed and wind speed generates a relative flow that affects the train stability. Wind tunnel tests on still railway vehicles (relative wind-train velocity in coincidence with absolute wind velocity) are mandatory according to Technical Specification for Interoperability (TSI) to ensure high-speed train safety. However, issues related to the correct evaluation of the full-scale aerodynamic behaviour of the trains can arise. In the present work, aerodynamic force and pressure coefficients measured in wind tunnel tests on a scaled model of ETR1000 high-speed train on single track ballast and rails are presented. The tests were performed in the GVPM wind tunnel of Politecnico di Milano. Results show that different flow behaviours can occur at high yaw angles when the train behaves like a bluff body depending on wind speed used during the test.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13010232