Loading…
The Spatio-Temporal Variations of GPP and Its Climatic Driving Factors in the Yangtze River Basin during 2000–2018
Terrestrial gross primary productivity (GPP) is the major carbon input to the terrestrial ecosystem. The Yangtze River Basin (YRB) holds a key role in shaping China’s economic and social progress, as well as in ecological and environmental protection. However, how the GPP in the YRB responds to the...
Saved in:
Published in: | Forests 2023-09, Vol.14 (9), p.1898 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Terrestrial gross primary productivity (GPP) is the major carbon input to the terrestrial ecosystem. The Yangtze River Basin (YRB) holds a key role in shaping China’s economic and social progress, as well as in ecological and environmental protection. However, how the GPP in the YRB responds to the climate factors remain unclear. In this research, we applied the Vegetation Photosynthesis Model (VPM) GPP data to explore the spatial and temporal variations of GPP in the YRB during 2000–2018. Based on the China Meteorological Forcing Dataset (CMFD), the partial least squares regression (PLSR) method was employed to identify the GPP responses to changes in precipitation, temperature, and shortwave radiation between 2000 and 2018. The findings showed that the long-term average of GPP in the YRB was 1153.5 ± 472.4 g C m−2 yr−1 between 2000 and 2018. The GPP of the Han River Basin, the Yibin-Yichang section of the Yangtze River mainstream, and the Poyang Lake Basin were relatively high, while the GPP of the Jinsha River Basin above Shigu and the Taihu Lake Basin were relatively low. A significant upward trend in GPP was observed over the 19-year period, with an annual increase rate of 8.86 g C m−2 yr−1 per year. The GPP of the Poyang Lake Basin and Jialing River Basin grew much faster than other water resource regions. Savannas and forests also had relatively higher GPP rate of increase compared to other vegetation types. The relative contributions of precipitation, temperature, and shortwave radiation to GPP variations in the YRB were 13.85 ± 13.86%, 58.87 ± 9.79%, and 27.07 ± 15.92%, respectively. Our results indicated that temperature was the main climatic driver on the changes of GPP in the YRB. This study contributes to an in-depth understanding of the variations and climate-impacting factors of vegetation productivity in the YRB. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14091898 |