Loading…

Innovative Strategy for Aroma Stabilization Using Green Solvents: Supercritical CO2 Extracts of Satureja montana Dispersed in Deep Eutectic Solvents

The aim of this work was to establish the potential of natural deep eutectic solvents (NADES) for the stabilization of aroma volatile organic compounds from a natural source. Satureja montana was used as a source of volatile components, as it is rich in terpenes of great commercial and biological im...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2023-07, Vol.13 (7), p.1126
Main Authors: Vladić, Jelena, Kovačević, Strahinja, Aladić, Krunoslav, Jokić, Stela, Radman, Sanja, Podunavac-Kuzmanović, Sanja, Duarte, Ana Rita C., Jerković, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work was to establish the potential of natural deep eutectic solvents (NADES) for the stabilization of aroma volatile organic compounds from a natural source. Satureja montana was used as a source of volatile components, as it is rich in terpenes of great commercial and biological importance, such as carvacrol, thymol, and thymoquinone, among others. Supercritical CO2 was used to extract the lipophilic fraction of S. montana, which was further directly dispersed in NADES. The stabilizing capacity of seven different NADES based on betaine and glycerol was analyzed. The stability of the components in NADES was monitored by analyzing the headspace profile during 6 months of storage at room temperature. The changes in the headspace profile over time were analyzed by using different statistical and chemometric tools and the Wilcoxon matched pair test. It was determined that alterations over time occurred such as degradation and oxidation, and they were the most prominent in the control. In addition, the indicator of decreased stability of the control was the formation of the new compounds that could compromise the quality of the product. In the stabilized NADES samples, the changes were significantly less prominent, indicating that the NADES had a stabilizing effect on the volatile compounds. According to Wilcoxon matched pair test, the most efficient stability was achieved by using betaine/ethylene glycol, glycerol/glucose, and betaine/sorbitol/water. Therefore, by applying two green solvents, a sustainable approach for obtaining pure and high-quality S. montana extracts with extended stability at room temperature was established.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom13071126