Loading…
Optimized Surface Ion Trap Design for Tight Confinement and Separation of Ion Chains
Qubit systems based on trapped ultracold ions win one of the leading positions in the quantum computing field, demonstrating quantum algorithms with the highest complexity to date. Surface Paul traps for ion confinement open the opportunity to scale quantum processors to hundreds of qubits and enabl...
Saved in:
Published in: | Quantum reports 2024-09, Vol.6 (3), p.442-451 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Qubit systems based on trapped ultracold ions win one of the leading positions in the quantum computing field, demonstrating quantum algorithms with the highest complexity to date. Surface Paul traps for ion confinement open the opportunity to scale quantum processors to hundreds of qubits and enable high-connectivity manipulations on ions. To fabricate such a system with certain characteristics, the special design of a surface electrode structure is required. The depth of the trapping potential, the stability parameter, the secular frequency and the distance between an ion and the trap surface should be optimized for better performance. Here, we present the optimized design of a relatively simple surface trap that allows several important high-fidelity primitives: tight ion confinement, laser cooling, and wide optical access. The suggested trap design also allows us to perform an important basic operation, namely, splitting an ion chain into two parts. |
---|---|
ISSN: | 2624-960X |
DOI: | 10.3390/quantum6030029 |