Loading…
Titanate incorporated anodized coating on magnesium alloy for corrosion protection, antibacterial responses and osteogenic enhancement
The rapid degradation of Mg alloy was reduced by incorporating titanate on a fluorine-based anodized layer. The coating shows (i) excellent biomineralization ability, (ii) improved local and periodical corrosion behavior and (iii) enhanced expression of osteogenic factors (Runx2, Col 1, OCN and OPN)...
Saved in:
Published in: | Journal of magnesium and alloys 2022-04, Vol.10 (4), p.1109-1123 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rapid degradation of Mg alloy was reduced by incorporating titanate on a fluorine-based anodized layer. The coating shows (i) excellent biomineralization ability, (ii) improved local and periodical corrosion behavior and (iii) enhanced expression of osteogenic factors (Runx2, Col 1, OCN and OPN) along with (iv) the antibacterial property. The fluoride and magnesium ions dissolution from the anodized layer is responsible for the better expression of osteogenic factors and antibacterial behavior. The preparation of the titanate incorporated anodized Mg alloy (Ti-AMg) is a facile solution to overcome the implant-associated bacterial infections with required biological functions including progression of bone ingrowth and biocompatibility. |
---|---|
ISSN: | 2213-9567 2213-9567 |
DOI: | 10.1016/j.jma.2020.11.011 |