Loading…

Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning

In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.163015-163025
Main Authors: Li, Xingxin, Zhu, Liqiang, Yu, Zujun, Guo, Baoqing, Wan, Yanqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3
cites cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3
container_end_page 163025
container_issue
container_start_page 163015
container_title IEEE access
container_volume 8
creator Li, Xingxin
Zhu, Liqiang
Yu, Zujun
Guo, Baoqing
Wan, Yanqin
description In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.
doi_str_mv 10.1109/ACCESS.2020.3019318
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177119</ieee_id><doaj_id>oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e</doaj_id><sourcerecordid>2454678469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMAXcInEOcWOH4mPpS0PqYhHgau1tdfFpU2KnR74ewypEHvZ1WhmdleTZeeUDCkl6nI0Hk_n82FJSjJkhCpG64NsUFKpCiaYPPw3H2dnMa5IqjpBohpkT2_Q-Pjum2X-2PqmyyfYoel82-TQ2PwZ_Dqf43KDTQe_6BVEtHkaJojb_H637nzxAvEjnyGEJvmcZkcO1hHP9v0ke72evoxvi9nDzd14NCsMJ3VXVMpaRHBQMemIUQvGLHNWwAJcKRgurGQOReUUcVg7QbhxvEwP24ozU1p2kt31vraFld4Gv4HwpVvw-hdow1JD6LxZoxZWpp0GnHTAGZAFWE45ZaWQQhmByeui99qG9nOHsdOrdheadL4uueCyqrlUicV6lgltjAHd31ZK9E8Uuo9C_0Sh91Ek1Xmv8oj4p1C0qmgifAMttYSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678469</pqid></control><display><type>article</type><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</creator><creatorcontrib>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</creatorcontrib><description>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3019318</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alarm systems ; Algorithms ; Cameras ; Coders ; Convolution ; deep learning ; Encoders-Decoders ; Feature extraction ; intrusion detection ; Machine learning ; Machine vision ; multi-task learning ; Neural networks ; Object segmentation ; rail segmentation ; Rail transportation ; Rails ; Railways ; Regression analysis ; Segmentation ; Task analysis ; Training ; Vanishing point detection ; Vision systems</subject><ispartof>IEEE access, 2020, Vol.8, p.163015-163025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</citedby><cites>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</cites><orcidid>0000-0002-6776-7367 ; 0000-0003-3898-2452 ; 0000-0002-5436-6660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177119$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Xingxin</creatorcontrib><creatorcontrib>Zhu, Liqiang</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Wan, Yanqin</creatorcontrib><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</description><subject>Alarm systems</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Coders</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Encoders-Decoders</subject><subject>Feature extraction</subject><subject>intrusion detection</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>multi-task learning</subject><subject>Neural networks</subject><subject>Object segmentation</subject><subject>rail segmentation</subject><subject>Rail transportation</subject><subject>Rails</subject><subject>Railways</subject><subject>Regression analysis</subject><subject>Segmentation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vanishing point detection</subject><subject>Vision systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMAXcInEOcWOH4mPpS0PqYhHgau1tdfFpU2KnR74ewypEHvZ1WhmdleTZeeUDCkl6nI0Hk_n82FJSjJkhCpG64NsUFKpCiaYPPw3H2dnMa5IqjpBohpkT2_Q-Pjum2X-2PqmyyfYoel82-TQ2PwZ_Dqf43KDTQe_6BVEtHkaJojb_H637nzxAvEjnyGEJvmcZkcO1hHP9v0ke72evoxvi9nDzd14NCsMJ3VXVMpaRHBQMemIUQvGLHNWwAJcKRgurGQOReUUcVg7QbhxvEwP24ozU1p2kt31vraFld4Gv4HwpVvw-hdow1JD6LxZoxZWpp0GnHTAGZAFWE45ZaWQQhmByeui99qG9nOHsdOrdheadL4uueCyqrlUicV6lgltjAHd31ZK9E8Uuo9C_0Sh91Ek1Xmv8oj4p1C0qmgifAMttYSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Xingxin</creator><creator>Zhu, Liqiang</creator><creator>Yu, Zujun</creator><creator>Guo, Baoqing</creator><creator>Wan, Yanqin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6776-7367</orcidid><orcidid>https://orcid.org/0000-0003-3898-2452</orcidid><orcidid>https://orcid.org/0000-0002-5436-6660</orcidid></search><sort><creationdate>2020</creationdate><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><author>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alarm systems</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Coders</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Encoders-Decoders</topic><topic>Feature extraction</topic><topic>intrusion detection</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>multi-task learning</topic><topic>Neural networks</topic><topic>Object segmentation</topic><topic>rail segmentation</topic><topic>Rail transportation</topic><topic>Rails</topic><topic>Railways</topic><topic>Regression analysis</topic><topic>Segmentation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vanishing point detection</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xingxin</creatorcontrib><creatorcontrib>Zhu, Liqiang</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Wan, Yanqin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xingxin</au><au>Zhu, Liqiang</au><au>Yu, Zujun</au><au>Guo, Baoqing</au><au>Wan, Yanqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>163015</spage><epage>163025</epage><pages>163015-163025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3019318</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6776-7367</orcidid><orcidid>https://orcid.org/0000-0003-3898-2452</orcidid><orcidid>https://orcid.org/0000-0002-5436-6660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.163015-163025
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e
source IEEE Xplore Open Access Journals
subjects Alarm systems
Algorithms
Cameras
Coders
Convolution
deep learning
Encoders-Decoders
Feature extraction
intrusion detection
Machine learning
Machine vision
multi-task learning
Neural networks
Object segmentation
rail segmentation
Rail transportation
Rails
Railways
Regression analysis
Segmentation
Task analysis
Training
Vanishing point detection
Vision systems
title Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20Point%20Detection%20and%20Rail%20Segmentation%20Based%20on%20Deep%20Multi-Task%20Learning&rft.jtitle=IEEE%20access&rft.au=Li,%20Xingxin&rft.date=2020&rft.volume=8&rft.spage=163015&rft.epage=163025&rft.pages=163015-163025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3019318&rft_dat=%3Cproquest_doaj_%3E2454678469%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678469&rft_id=info:pmid/&rft_ieee_id=9177119&rfr_iscdi=true