Loading…
Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning
In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.163015-163025 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3 |
container_end_page | 163025 |
container_issue | |
container_start_page | 163015 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Xingxin Zhu, Liqiang Yu, Zujun Guo, Baoqing Wan, Yanqin |
description | In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy. |
doi_str_mv | 10.1109/ACCESS.2020.3019318 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177119</ieee_id><doaj_id>oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e</doaj_id><sourcerecordid>2454678469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMAXcInEOcWOH4mPpS0PqYhHgau1tdfFpU2KnR74ewypEHvZ1WhmdleTZeeUDCkl6nI0Hk_n82FJSjJkhCpG64NsUFKpCiaYPPw3H2dnMa5IqjpBohpkT2_Q-Pjum2X-2PqmyyfYoel82-TQ2PwZ_Dqf43KDTQe_6BVEtHkaJojb_H637nzxAvEjnyGEJvmcZkcO1hHP9v0ke72evoxvi9nDzd14NCsMJ3VXVMpaRHBQMemIUQvGLHNWwAJcKRgurGQOReUUcVg7QbhxvEwP24ozU1p2kt31vraFld4Gv4HwpVvw-hdow1JD6LxZoxZWpp0GnHTAGZAFWE45ZaWQQhmByeui99qG9nOHsdOrdheadL4uueCyqrlUicV6lgltjAHd31ZK9E8Uuo9C_0Sh91Ek1Xmv8oj4p1C0qmgifAMttYSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678469</pqid></control><display><type>article</type><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</creator><creatorcontrib>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</creatorcontrib><description>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3019318</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alarm systems ; Algorithms ; Cameras ; Coders ; Convolution ; deep learning ; Encoders-Decoders ; Feature extraction ; intrusion detection ; Machine learning ; Machine vision ; multi-task learning ; Neural networks ; Object segmentation ; rail segmentation ; Rail transportation ; Rails ; Railways ; Regression analysis ; Segmentation ; Task analysis ; Training ; Vanishing point detection ; Vision systems</subject><ispartof>IEEE access, 2020, Vol.8, p.163015-163025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</citedby><cites>FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</cites><orcidid>0000-0002-6776-7367 ; 0000-0003-3898-2452 ; 0000-0002-5436-6660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177119$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Xingxin</creatorcontrib><creatorcontrib>Zhu, Liqiang</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Wan, Yanqin</creatorcontrib><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</description><subject>Alarm systems</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Coders</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Encoders-Decoders</subject><subject>Feature extraction</subject><subject>intrusion detection</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>multi-task learning</subject><subject>Neural networks</subject><subject>Object segmentation</subject><subject>rail segmentation</subject><subject>Rail transportation</subject><subject>Rails</subject><subject>Railways</subject><subject>Regression analysis</subject><subject>Segmentation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vanishing point detection</subject><subject>Vision systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMAXcInEOcWOH4mPpS0PqYhHgau1tdfFpU2KnR74ewypEHvZ1WhmdleTZeeUDCkl6nI0Hk_n82FJSjJkhCpG64NsUFKpCiaYPPw3H2dnMa5IqjpBohpkT2_Q-Pjum2X-2PqmyyfYoel82-TQ2PwZ_Dqf43KDTQe_6BVEtHkaJojb_H637nzxAvEjnyGEJvmcZkcO1hHP9v0ke72evoxvi9nDzd14NCsMJ3VXVMpaRHBQMemIUQvGLHNWwAJcKRgurGQOReUUcVg7QbhxvEwP24ozU1p2kt31vraFld4Gv4HwpVvw-hdow1JD6LxZoxZWpp0GnHTAGZAFWE45ZaWQQhmByeui99qG9nOHsdOrdheadL4uueCyqrlUicV6lgltjAHd31ZK9E8Uuo9C_0Sh91Ek1Xmv8oj4p1C0qmgifAMttYSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Xingxin</creator><creator>Zhu, Liqiang</creator><creator>Yu, Zujun</creator><creator>Guo, Baoqing</creator><creator>Wan, Yanqin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6776-7367</orcidid><orcidid>https://orcid.org/0000-0003-3898-2452</orcidid><orcidid>https://orcid.org/0000-0002-5436-6660</orcidid></search><sort><creationdate>2020</creationdate><title>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</title><author>Li, Xingxin ; Zhu, Liqiang ; Yu, Zujun ; Guo, Baoqing ; Wan, Yanqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alarm systems</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Coders</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Encoders-Decoders</topic><topic>Feature extraction</topic><topic>intrusion detection</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>multi-task learning</topic><topic>Neural networks</topic><topic>Object segmentation</topic><topic>rail segmentation</topic><topic>Rail transportation</topic><topic>Rails</topic><topic>Railways</topic><topic>Regression analysis</topic><topic>Segmentation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vanishing point detection</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xingxin</creatorcontrib><creatorcontrib>Zhu, Liqiang</creatorcontrib><creatorcontrib>Yu, Zujun</creatorcontrib><creatorcontrib>Guo, Baoqing</creatorcontrib><creatorcontrib>Wan, Yanqin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xingxin</au><au>Zhu, Liqiang</au><au>Yu, Zujun</au><au>Guo, Baoqing</au><au>Wan, Yanqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>163015</spage><epage>163025</epage><pages>163015-163025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In modern railway systems, video surveillance and machine vision analysis have been widely used to detect perimeter intrusions. For pan-tilt-zoom (PTZ) cameras, the machine vision system needs to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and then automatically determine the alarm region from segmented rails. The multi-task based neural network consists of a feature extraction base network and three sub-task networks. The first sub-task network is a convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and rail segmentation, low-level features is modulated by high-level semantic information before feeding to the decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction method needs very small training dataset and outperforms other methods in both efficiency and accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3019318</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6776-7367</orcidid><orcidid>https://orcid.org/0000-0003-3898-2452</orcidid><orcidid>https://orcid.org/0000-0002-5436-6660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.163015-163025 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5d6408caf6fa43a0bad4141325659c5e |
source | IEEE Xplore Open Access Journals |
subjects | Alarm systems Algorithms Cameras Coders Convolution deep learning Encoders-Decoders Feature extraction intrusion detection Machine learning Machine vision multi-task learning Neural networks Object segmentation rail segmentation Rail transportation Rails Railways Regression analysis Segmentation Task analysis Training Vanishing point detection Vision systems |
title | Vanishing Point Detection and Rail Segmentation Based on Deep Multi-Task Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20Point%20Detection%20and%20Rail%20Segmentation%20Based%20on%20Deep%20Multi-Task%20Learning&rft.jtitle=IEEE%20access&rft.au=Li,%20Xingxin&rft.date=2020&rft.volume=8&rft.spage=163015&rft.epage=163025&rft.pages=163015-163025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3019318&rft_dat=%3Cproquest_doaj_%3E2454678469%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-79ddeeafa736f0c9b33d3fd5abaf253ebd63fe57f90fe8f504cf42110d743c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678469&rft_id=info:pmid/&rft_ieee_id=9177119&rfr_iscdi=true |