Loading…
A non‐convex ternary variational decomposition and its application for image denoising
A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E s...
Saved in:
Published in: | IET signal processing 2022-05, Vol.16 (3), p.248-266 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953 |
---|---|
cites | cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953 |
container_end_page | 266 |
container_issue | 3 |
container_start_page | 248 |
container_title | IET signal processing |
container_volume | 16 |
creator | Tang, Liming Wu, Liang Fang, Zhuang Li, Chunyan |
description | A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM). |
doi_str_mv | 10.1049/sil2.12088 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d67922238d84da7aee40e184802d421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748497164</galeid><doaj_id>oai_doaj_org_article_5d67922238d84da7aee40e184802d421</doaj_id><sourcerecordid>A748497164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdR8HfjE2QttCaZZCZZFvGnUHChgrtwTe6UyDQpyaB25yP4jD6JaUdcShbJvXzncG9OVZ0zOmVU6Mvsez5lnCq1Vx2xVrKJblS9__du5WF1nPMrpbKRjB9VzzMSYvj-_LIxvOEHGTAFSBvyBsnD4GOAnji0cbWO2W9rAsERP2QC63Xv7Y4hXUzEr2CJhQ3RZx-Wp9VBB33Gs9_7pHq6uX68upss7m_nV7PFxNatUhPJVF0r6eyL7WpEpIJTWQNnvKWaS8uA6g4aqTUXAC-gGVIsa8gOqOJa1ifVfPR1EV7NOpUx0sZE8GbXiGlpIA3e9mika1rNOa-VU8JBC4iCIlNCUe4EZ8VrOnotoeA-dHFIYMtxuPLlg7DzpT9rhRK6ZY0ogotRYFPMOWH3NwCjZhuI2QZidoEUmI3we3HZ_EOah_mCj5ofRF2N0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A non‐convex ternary variational decomposition and its application for image denoising</title><source>Wiley-Blackwell Open Access Collection</source><creator>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</creator><creatorcontrib>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</creatorcontrib><description>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</description><identifier>ISSN: 1751-9675</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/sil2.12088</identifier><language>eng</language><publisher>John Wiley & Sons, Inc</publisher><subject>Algorithms ; Differential equations ; image denoising ; non‐convex ; regularisation ; structure ; texture ; variational decomposition</subject><ispartof>IET signal processing, 2022-05, Vol.16 (3), p.248-266</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</citedby><cites>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fsil2.12088$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fsil2.12088$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,11543,27905,27906,46033,46457</link.rule.ids></links><search><creatorcontrib>Tang, Liming</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Fang, Zhuang</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><title>A non‐convex ternary variational decomposition and its application for image denoising</title><title>IET signal processing</title><description>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>image denoising</subject><subject>non‐convex</subject><subject>regularisation</subject><subject>structure</subject><subject>texture</subject><subject>variational decomposition</subject><issn>1751-9675</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEUhQdR8HfjE2QttCaZZCZZFvGnUHChgrtwTe6UyDQpyaB25yP4jD6JaUdcShbJvXzncG9OVZ0zOmVU6Mvsez5lnCq1Vx2xVrKJblS9__du5WF1nPMrpbKRjB9VzzMSYvj-_LIxvOEHGTAFSBvyBsnD4GOAnji0cbWO2W9rAsERP2QC63Xv7Y4hXUzEr2CJhQ3RZx-Wp9VBB33Gs9_7pHq6uX68upss7m_nV7PFxNatUhPJVF0r6eyL7WpEpIJTWQNnvKWaS8uA6g4aqTUXAC-gGVIsa8gOqOJa1ifVfPR1EV7NOpUx0sZE8GbXiGlpIA3e9mika1rNOa-VU8JBC4iCIlNCUe4EZ8VrOnotoeA-dHFIYMtxuPLlg7DzpT9rhRK6ZY0ogotRYFPMOWH3NwCjZhuI2QZidoEUmI3we3HZ_EOah_mCj5ofRF2N0A</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Tang, Liming</creator><creator>Wu, Liang</creator><creator>Fang, Zhuang</creator><creator>Li, Chunyan</creator><general>John Wiley & Sons, Inc</general><general>Hindawi-IET</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202205</creationdate><title>A non‐convex ternary variational decomposition and its application for image denoising</title><author>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>image denoising</topic><topic>non‐convex</topic><topic>regularisation</topic><topic>structure</topic><topic>texture</topic><topic>variational decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liming</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Fang, Zhuang</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liming</au><au>Wu, Liang</au><au>Fang, Zhuang</au><au>Li, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non‐convex ternary variational decomposition and its application for image denoising</atitle><jtitle>IET signal processing</jtitle><date>2022-05</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>248</spage><epage>266</epage><pages>248-266</pages><issn>1751-9675</issn><eissn>1751-9683</eissn><abstract>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</abstract><pub>John Wiley & Sons, Inc</pub><doi>10.1049/sil2.12088</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-9675 |
ispartof | IET signal processing, 2022-05, Vol.16 (3), p.248-266 |
issn | 1751-9675 1751-9683 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5d67922238d84da7aee40e184802d421 |
source | Wiley-Blackwell Open Access Collection |
subjects | Algorithms Differential equations image denoising non‐convex regularisation structure texture variational decomposition |
title | A non‐convex ternary variational decomposition and its application for image denoising |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non%E2%80%90convex%20ternary%20variational%20decomposition%20and%20its%20application%20for%20image%20denoising&rft.jtitle=IET%20signal%20processing&rft.au=Tang,%20Liming&rft.date=2022-05&rft.volume=16&rft.issue=3&rft.spage=248&rft.epage=266&rft.pages=248-266&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/sil2.12088&rft_dat=%3Cgale_doaj_%3EA748497164%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A748497164&rfr_iscdi=true |