Loading…

A non‐convex ternary variational decomposition and its application for image denoising

A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E s...

Full description

Saved in:
Bibliographic Details
Published in:IET signal processing 2022-05, Vol.16 (3), p.248-266
Main Authors: Tang, Liming, Wu, Liang, Fang, Zhuang, Li, Chunyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953
cites cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953
container_end_page 266
container_issue 3
container_start_page 248
container_title IET signal processing
container_volume 16
creator Tang, Liming
Wu, Liang
Fang, Zhuang
Li, Chunyan
description A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).
doi_str_mv 10.1049/sil2.12088
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d67922238d84da7aee40e184802d421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748497164</galeid><doaj_id>oai_doaj_org_article_5d67922238d84da7aee40e184802d421</doaj_id><sourcerecordid>A748497164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdR8HfjE2QttCaZZCZZFvGnUHChgrtwTe6UyDQpyaB25yP4jD6JaUdcShbJvXzncG9OVZ0zOmVU6Mvsez5lnCq1Vx2xVrKJblS9__du5WF1nPMrpbKRjB9VzzMSYvj-_LIxvOEHGTAFSBvyBsnD4GOAnji0cbWO2W9rAsERP2QC63Xv7Y4hXUzEr2CJhQ3RZx-Wp9VBB33Gs9_7pHq6uX68upss7m_nV7PFxNatUhPJVF0r6eyL7WpEpIJTWQNnvKWaS8uA6g4aqTUXAC-gGVIsa8gOqOJa1ifVfPR1EV7NOpUx0sZE8GbXiGlpIA3e9mika1rNOa-VU8JBC4iCIlNCUe4EZ8VrOnotoeA-dHFIYMtxuPLlg7DzpT9rhRK6ZY0ogotRYFPMOWH3NwCjZhuI2QZidoEUmI3we3HZ_EOah_mCj5ofRF2N0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A non‐convex ternary variational decomposition and its application for image denoising</title><source>Wiley-Blackwell Open Access Collection</source><creator>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</creator><creatorcontrib>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</creatorcontrib><description>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</description><identifier>ISSN: 1751-9675</identifier><identifier>EISSN: 1751-9683</identifier><identifier>DOI: 10.1049/sil2.12088</identifier><language>eng</language><publisher>John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Differential equations ; image denoising ; non‐convex ; regularisation ; structure ; texture ; variational decomposition</subject><ispartof>IET signal processing, 2022-05, Vol.16 (3), p.248-266</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</citedby><cites>FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fsil2.12088$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fsil2.12088$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,11543,27905,27906,46033,46457</link.rule.ids></links><search><creatorcontrib>Tang, Liming</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Fang, Zhuang</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><title>A non‐convex ternary variational decomposition and its application for image denoising</title><title>IET signal processing</title><description>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>image denoising</subject><subject>non‐convex</subject><subject>regularisation</subject><subject>structure</subject><subject>texture</subject><subject>variational decomposition</subject><issn>1751-9675</issn><issn>1751-9683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEUhQdR8HfjE2QttCaZZCZZFvGnUHChgrtwTe6UyDQpyaB25yP4jD6JaUdcShbJvXzncG9OVZ0zOmVU6Mvsez5lnCq1Vx2xVrKJblS9__du5WF1nPMrpbKRjB9VzzMSYvj-_LIxvOEHGTAFSBvyBsnD4GOAnji0cbWO2W9rAsERP2QC63Xv7Y4hXUzEr2CJhQ3RZx-Wp9VBB33Gs9_7pHq6uX68upss7m_nV7PFxNatUhPJVF0r6eyL7WpEpIJTWQNnvKWaS8uA6g4aqTUXAC-gGVIsa8gOqOJa1ifVfPR1EV7NOpUx0sZE8GbXiGlpIA3e9mika1rNOa-VU8JBC4iCIlNCUe4EZ8VrOnotoeA-dHFIYMtxuPLlg7DzpT9rhRK6ZY0ogotRYFPMOWH3NwCjZhuI2QZidoEUmI3we3HZ_EOah_mCj5ofRF2N0A</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Tang, Liming</creator><creator>Wu, Liang</creator><creator>Fang, Zhuang</creator><creator>Li, Chunyan</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi-IET</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202205</creationdate><title>A non‐convex ternary variational decomposition and its application for image denoising</title><author>Tang, Liming ; Wu, Liang ; Fang, Zhuang ; Li, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>image denoising</topic><topic>non‐convex</topic><topic>regularisation</topic><topic>structure</topic><topic>texture</topic><topic>variational decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liming</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Fang, Zhuang</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liming</au><au>Wu, Liang</au><au>Fang, Zhuang</au><au>Li, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non‐convex ternary variational decomposition and its application for image denoising</atitle><jtitle>IET signal processing</jtitle><date>2022-05</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>248</spage><epage>266</epage><pages>248-266</pages><issn>1751-9675</issn><eissn>1751-9683</eissn><abstract>A non‐convex ternary variational decomposition model is proposed in this study, which decomposes the image into three components including structure, texture and noise. In the model, a non‐convex total variation (NTV) regulariser is utilised to model the structure component, and the weaker G and E spaces are used to model the texture and noise components, respectively. The proposed model provides a very sparse representation of the structure in total variation (TV) transform domain due to the use of non‐convex regularisation and cleanly separates the texture and noise since two different weaker spaces are used to model these two components, respectively. In image denoising application, the proposed model can successfully remove noise while effectively preserving image edges and constructing textures. An alternating direction iteration algorithm combining with iteratively reweighted l1 algorithm, projection algorithm and wavelet soft threshold algorithm is introduced to effectively solve the proposed model. Numerical results validate the model and the algorithm for both synthetic and real images. Furthermore, compared with several state‐of‐the‐art image variational restoration models, the proposed model yields the best performance in terms of the peak signal to noise ratio (PSNR) and the mean structural similarity index (SSIM).</abstract><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/sil2.12088</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-9675
ispartof IET signal processing, 2022-05, Vol.16 (3), p.248-266
issn 1751-9675
1751-9683
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d67922238d84da7aee40e184802d421
source Wiley-Blackwell Open Access Collection
subjects Algorithms
Differential equations
image denoising
non‐convex
regularisation
structure
texture
variational decomposition
title A non‐convex ternary variational decomposition and its application for image denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non%E2%80%90convex%20ternary%20variational%20decomposition%20and%20its%20application%20for%20image%20denoising&rft.jtitle=IET%20signal%20processing&rft.au=Tang,%20Liming&rft.date=2022-05&rft.volume=16&rft.issue=3&rft.spage=248&rft.epage=266&rft.pages=248-266&rft.issn=1751-9675&rft.eissn=1751-9683&rft_id=info:doi/10.1049/sil2.12088&rft_dat=%3Cgale_doaj_%3EA748497164%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3788-5183385dcbcf3eee042053a21270925c1a09fa659924aaba91e0e6755fa082953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A748497164&rfr_iscdi=true