Loading…

2D Ising Field Theory in a magnetic field: the Yang-Lee singularity

A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee f...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2022-08, Vol.2022 (8), p.57-41, Article 57
Main Authors: Xu, Hao-Lan, Zamolodchikov, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633
cites cdi_FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633
container_end_page 41
container_issue 8
container_start_page 57
container_title The journal of high energy physics
container_volume 2022
creator Xu, Hao-Lan
Zamolodchikov, Alexander
description A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT M 2 / 5 ), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator T T ¯ , and we use the universal properties of the T T ¯ deformation to fix the contributions of higher orders in the corresponding coupling parameter α . Another irrelevant operator we deal with is the descendant L_ 4 L ¯ _ 4 ϕ of the relevant primary ϕ in M 2 / 5 . The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.
doi_str_mv 10.1007/JHEP08(2022)057
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d74ebc44bd34cd78f4a608d23d5cd98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d74ebc44bd34cd78f4a608d23d5cd98</doaj_id><sourcerecordid>2848478309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqUws1pigSH07DiJzYZKC0WVYCgDk-X4I02VJsVOh_73OAQBC9Od7t57d_pF0SWGWwyQT56fZq_ArgkQcgNpfhSNMBAeM5rz4z_9aXTm_QYAp5jDKJqSB7TwVVOieWVqjVZr07oDqhok0VaWjekqhWy_ukPd2qB32ZTx0hjUe_a1dFV3OI9OrKy9ufiu4-htPltNn-Lly-Nier-MFcV5F-OMYp4ayDVRhaGaF5bggiVZQbOCs1RryjHDLLGKMwmFBGsJBWI1zjjLkmQcLYZc3cqN2LlqK91BtLISX4PWlUK68G9tRKpzagpFaaETqnTOLJUZME0SnSrNWci6GrJ2rv3YG9-JTbt3TXhfEEYDKJYAD6rJoFKu9d4Z-3MVg-ipi4G66KmLQD04YHD4oGxK435z_7N8AkVWgX8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848478309</pqid></control><display><type>article</type><title>2D Ising Field Theory in a magnetic field: the Yang-Lee singularity</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Xu, Hao-Lan ; Zamolodchikov, Alexander</creator><creatorcontrib>Xu, Hao-Lan ; Zamolodchikov, Alexander</creatorcontrib><description>A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT M 2 / 5 ), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator T T ¯ , and we use the universal properties of the T T ¯ deformation to fix the contributions of higher orders in the corresponding coupling parameter α . Another irrelevant operator we deal with is the descendant L_ 4 L ¯ _ 4 ϕ of the relevant primary ϕ in M 2 / 5 . The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2022)057</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Couplings ; Critical point ; Curie temperature ; Elementary Particles ; Fermions ; Field Theories in Lower Dimensions ; Field theory ; Fine structure ; Fixed points (mathematics) ; High energy physics ; Integrable Field Theories ; Ising model ; Magnetic fields ; Operators (mathematics) ; Particle mass ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Renormalization Group ; Scale and Conformal Symmetries ; Singularities ; String Theory</subject><ispartof>The journal of high energy physics, 2022-08, Vol.2022 (8), p.57-41, Article 57</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633</citedby><cites>FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848478309/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848478309?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Xu, Hao-Lan</creatorcontrib><creatorcontrib>Zamolodchikov, Alexander</creatorcontrib><title>2D Ising Field Theory in a magnetic field: the Yang-Lee singularity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT M 2 / 5 ), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator T T ¯ , and we use the universal properties of the T T ¯ deformation to fix the contributions of higher orders in the corresponding coupling parameter α . Another irrelevant operator we deal with is the descendant L_ 4 L ¯ _ 4 ϕ of the relevant primary ϕ in M 2 / 5 . The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.</description><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Critical point</subject><subject>Curie temperature</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Field Theories in Lower Dimensions</subject><subject>Field theory</subject><subject>Fine structure</subject><subject>Fixed points (mathematics)</subject><subject>High energy physics</subject><subject>Integrable Field Theories</subject><subject>Ising model</subject><subject>Magnetic fields</subject><subject>Operators (mathematics)</subject><subject>Particle mass</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Renormalization Group</subject><subject>Scale and Conformal Symmetries</subject><subject>Singularities</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxSMEEqUws1pigSH07DiJzYZKC0WVYCgDk-X4I02VJsVOh_73OAQBC9Od7t57d_pF0SWGWwyQT56fZq_ArgkQcgNpfhSNMBAeM5rz4z_9aXTm_QYAp5jDKJqSB7TwVVOieWVqjVZr07oDqhok0VaWjekqhWy_ukPd2qB32ZTx0hjUe_a1dFV3OI9OrKy9ufiu4-htPltNn-Lly-Nier-MFcV5F-OMYp4ayDVRhaGaF5bggiVZQbOCs1RryjHDLLGKMwmFBGsJBWI1zjjLkmQcLYZc3cqN2LlqK91BtLISX4PWlUK68G9tRKpzagpFaaETqnTOLJUZME0SnSrNWci6GrJ2rv3YG9-JTbt3TXhfEEYDKJYAD6rJoFKu9d4Z-3MVg-ipi4G66KmLQD04YHD4oGxK435z_7N8AkVWgX8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xu, Hao-Lan</creator><creator>Zamolodchikov, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20220801</creationdate><title>2D Ising Field Theory in a magnetic field: the Yang-Lee singularity</title><author>Xu, Hao-Lan ; Zamolodchikov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Critical point</topic><topic>Curie temperature</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Field Theories in Lower Dimensions</topic><topic>Field theory</topic><topic>Fine structure</topic><topic>Fixed points (mathematics)</topic><topic>High energy physics</topic><topic>Integrable Field Theories</topic><topic>Ising model</topic><topic>Magnetic fields</topic><topic>Operators (mathematics)</topic><topic>Particle mass</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Renormalization Group</topic><topic>Scale and Conformal Symmetries</topic><topic>Singularities</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hao-Lan</creatorcontrib><creatorcontrib>Zamolodchikov, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hao-Lan</au><au>Zamolodchikov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D Ising Field Theory in a magnetic field: the Yang-Lee singularity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>2022</volume><issue>8</issue><spage>57</spage><epage>41</epage><pages>57-41</pages><artnum>57</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT M 2 / 5 ), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator T T ¯ , and we use the universal properties of the T T ¯ deformation to fix the contributions of higher orders in the corresponding coupling parameter α . Another irrelevant operator we deal with is the descendant L_ 4 L ¯ _ 4 ϕ of the relevant primary ϕ in M 2 / 5 . The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2022)057</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2022-08, Vol.2022 (8), p.57-41, Article 57
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d74ebc44bd34cd78f4a608d23d5cd98
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classical and Quantum Gravitation
Couplings
Critical point
Curie temperature
Elementary Particles
Fermions
Field Theories in Lower Dimensions
Field theory
Fine structure
Fixed points (mathematics)
High energy physics
Integrable Field Theories
Ising model
Magnetic fields
Operators (mathematics)
Particle mass
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Renormalization Group
Scale and Conformal Symmetries
Singularities
String Theory
title 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20Ising%20Field%20Theory%20in%20a%20magnetic%20field:%20the%20Yang-Lee%20singularity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Xu,%20Hao-Lan&rft.date=2022-08-01&rft.volume=2022&rft.issue=8&rft.spage=57&rft.epage=41&rft.pages=57-41&rft.artnum=57&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2022)057&rft_dat=%3Cproquest_doaj_%3E2848478309%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-164195e07d2cbe4d9bf21b836b46b985dd4918183fc98a0ba0ff2402fd1698633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848478309&rft_id=info:pmid/&rfr_iscdi=true