Loading…

The Identification of Key Genes and Pathways in Glioma by Bioinformatics Analysis

Glioma is the most common malignant tumor in the central nervous system. This study aims to explore the potential mechanism and identify gene signatures of glioma. The glioma gene expression profile GSE4290 was analyzed for differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of immunology research 2017-01, Vol.2017 (2017), p.1-9
Main Authors: Xu, Haixiong, Li, Enmin, Xu, Ke, Jin, Tao, Wu, Bingli, Du, Zepeng, Xu, Zhennan, Liu, Ming-Fa, Xu, Liyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glioma is the most common malignant tumor in the central nervous system. This study aims to explore the potential mechanism and identify gene signatures of glioma. The glioma gene expression profile GSE4290 was analyzed for differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied for the enriched pathways. A protein-protein interaction (PPI) network was constructed to find the hub genes. Survival analysis was conducted to screen and validate critical genes. In this study, 775 downregulated DEGs were identified. GO analysis demonstrated that the DEGs were enriched in cellular protein modification, regulation of cell communication, and regulation of signaling. KEGG analysis indicated that the DEGs were enriched in the MAPK signaling pathway, endocytosis, oxytocin signaling, and calcium signaling. PPI network and module analysis found 12 hub genes, which were enriched in synaptic vesicle cycling rheumatoid arthritis and collecting duct acid secretion. The four key genes CDK17, GNA13, PHF21A, and MTHFD2 were identified in both generation (GSE4412) and validation (GSE4271) dataset, respectively. Regression analysis showed that CDK13, PHF21A, and MTHFD2 were independent predictors. The results suggested that CDK17, GNA13, PHF21A, and MTHFD2 might play important roles and potentially be valuable in the prognosis and treatment of glioma.
ISSN:2314-8861
2314-7156
DOI:10.1155/2017/1278081