Loading…

Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment

Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not pla...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in human neuroscience 2022-02, Vol.16, p.754379-754379
Main Authors: Oba, Kentaro, Hamada, Koji, Tanabe-Ishibashi, Azumi, Murase, Fumihiko, Hirose, Masaaki, Kawashima, Ryuta, Sugiura, Motoaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3
cites cdi_FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3
container_end_page 754379
container_issue
container_start_page 754379
container_title Frontiers in human neuroscience
container_volume 16
creator Oba, Kentaro
Hamada, Koji
Tanabe-Ishibashi, Azumi
Murase, Fumihiko
Hirose, Masaaki
Kawashima, Ryuta
Sugiura, Motoaki
description Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: accurate lane-keeping during driving (driving accuracy), the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social-cognitive processes on the braking response to pedestrians.
doi_str_mv 10.3389/fnhum.2022.754379
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5d808bb361fd4c88bfe64282289fbc81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d808bb361fd4c88bfe64282289fbc81</doaj_id><sourcerecordid>2627001323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqXwA9ggS2zYZPA7DgukamjpiAGqFtaW41zPeJTYg5NUKhv-Op6ZUrWs_Pruub5HpyheEzxjTNXvXVhP_YxiSmeV4KyqnxTHREpaCiLJ0wf7o-LFMGwwllQK8rw4YoJSUgt2XPz5BlMyHZrHlKAzIwzoMkHr7ejDCi1NgPILwHZ3MKFFF-a3SS36BCNkIoYP6DQg9_Vqga7Hqb1F52DGKe1pdAktDGPyJpRX3q7Rte-n3CEmdBZufIqhhzC-LJ450w3w6m49KX6en_2YX5TL758X89NlaXnNxlIIoXjVgCJNVRlVO8Wptc4pJklNRe2wI9IZ4TC3IKXC0DSKWqKcYEK4hp0Ui4NuG81Gb5PvTbrV0Xi9v4hppU0ave1Ai1Zh1TRZ2bXcKtU4kJwqSnPbxiqStT4etLZT00Nr8xjZwkeij1-CX-tVvNFKSY5VlQXe3Qmk-GvKJuneDxa6Ltsdp0FTybgQmeQZffsfuolTCtmqTNEKY8IoyxQ5UDbFYUjg7j9DsN5FRe-jondR0Yeo5Jo3D6e4r_iXDfYXfvO8Lg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627001323</pqid></control><display><type>article</type><title>Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment</title><source>PubMed Central</source><creator>Oba, Kentaro ; Hamada, Koji ; Tanabe-Ishibashi, Azumi ; Murase, Fumihiko ; Hirose, Masaaki ; Kawashima, Ryuta ; Sugiura, Motoaki</creator><creatorcontrib>Oba, Kentaro ; Hamada, Koji ; Tanabe-Ishibashi, Azumi ; Murase, Fumihiko ; Hirose, Masaaki ; Kawashima, Ryuta ; Sugiura, Motoaki</creatorcontrib><description>Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: accurate lane-keeping during driving (driving accuracy), the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social-cognitive processes on the braking response to pedestrians.</description><identifier>ISSN: 1662-5161</identifier><identifier>EISSN: 1662-5161</identifier><identifier>DOI: 10.3389/fnhum.2022.754379</identifier><identifier>PMID: 35221953</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Brain research ; Cognitive ability ; driving safety ; driving simulator ; fMRI ; frontoparietal control network ; Functional magnetic resonance imaging ; Human Neuroscience ; Roads &amp; highways ; superior temporal sulcus ; Traffic accidents &amp; safety</subject><ispartof>Frontiers in human neuroscience, 2022-02, Vol.16, p.754379-754379</ispartof><rights>Copyright © 2022 Oba, Hamada, Tanabe-Ishibashi, Murase, Hirose, Kawashima and Sugiura.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022 Oba, Hamada, Tanabe-Ishibashi, Murase, Hirose, Kawashima and Sugiura. 2022 Oba, Hamada, Tanabe-Ishibashi, Murase, Hirose, Kawashima and Sugiura</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3</citedby><cites>FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35221953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oba, Kentaro</creatorcontrib><creatorcontrib>Hamada, Koji</creatorcontrib><creatorcontrib>Tanabe-Ishibashi, Azumi</creatorcontrib><creatorcontrib>Murase, Fumihiko</creatorcontrib><creatorcontrib>Hirose, Masaaki</creatorcontrib><creatorcontrib>Kawashima, Ryuta</creatorcontrib><creatorcontrib>Sugiura, Motoaki</creatorcontrib><title>Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment</title><title>Frontiers in human neuroscience</title><addtitle>Front Hum Neurosci</addtitle><description>Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: accurate lane-keeping during driving (driving accuracy), the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social-cognitive processes on the braking response to pedestrians.</description><subject>Brain research</subject><subject>Cognitive ability</subject><subject>driving safety</subject><subject>driving simulator</subject><subject>fMRI</subject><subject>frontoparietal control network</subject><subject>Functional magnetic resonance imaging</subject><subject>Human Neuroscience</subject><subject>Roads &amp; highways</subject><subject>superior temporal sulcus</subject><subject>Traffic accidents &amp; safety</subject><issn>1662-5161</issn><issn>1662-5161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEoqXwA9ggS2zYZPA7DgukamjpiAGqFtaW41zPeJTYg5NUKhv-Op6ZUrWs_Pruub5HpyheEzxjTNXvXVhP_YxiSmeV4KyqnxTHREpaCiLJ0wf7o-LFMGwwllQK8rw4YoJSUgt2XPz5BlMyHZrHlKAzIwzoMkHr7ejDCi1NgPILwHZ3MKFFF-a3SS36BCNkIoYP6DQg9_Vqga7Hqb1F52DGKe1pdAktDGPyJpRX3q7Rte-n3CEmdBZufIqhhzC-LJ450w3w6m49KX6en_2YX5TL758X89NlaXnNxlIIoXjVgCJNVRlVO8Wptc4pJklNRe2wI9IZ4TC3IKXC0DSKWqKcYEK4hp0Ui4NuG81Gb5PvTbrV0Xi9v4hppU0ave1Ai1Zh1TRZ2bXcKtU4kJwqSnPbxiqStT4etLZT00Nr8xjZwkeij1-CX-tVvNFKSY5VlQXe3Qmk-GvKJuneDxa6Ltsdp0FTybgQmeQZffsfuolTCtmqTNEKY8IoyxQ5UDbFYUjg7j9DsN5FRe-jondR0Yeo5Jo3D6e4r_iXDfYXfvO8Lg</recordid><startdate>20220209</startdate><enddate>20220209</enddate><creator>Oba, Kentaro</creator><creator>Hamada, Koji</creator><creator>Tanabe-Ishibashi, Azumi</creator><creator>Murase, Fumihiko</creator><creator>Hirose, Masaaki</creator><creator>Kawashima, Ryuta</creator><creator>Sugiura, Motoaki</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220209</creationdate><title>Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment</title><author>Oba, Kentaro ; Hamada, Koji ; Tanabe-Ishibashi, Azumi ; Murase, Fumihiko ; Hirose, Masaaki ; Kawashima, Ryuta ; Sugiura, Motoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain research</topic><topic>Cognitive ability</topic><topic>driving safety</topic><topic>driving simulator</topic><topic>fMRI</topic><topic>frontoparietal control network</topic><topic>Functional magnetic resonance imaging</topic><topic>Human Neuroscience</topic><topic>Roads &amp; highways</topic><topic>superior temporal sulcus</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oba, Kentaro</creatorcontrib><creatorcontrib>Hamada, Koji</creatorcontrib><creatorcontrib>Tanabe-Ishibashi, Azumi</creatorcontrib><creatorcontrib>Murase, Fumihiko</creatorcontrib><creatorcontrib>Hirose, Masaaki</creatorcontrib><creatorcontrib>Kawashima, Ryuta</creatorcontrib><creatorcontrib>Sugiura, Motoaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in human neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oba, Kentaro</au><au>Hamada, Koji</au><au>Tanabe-Ishibashi, Azumi</au><au>Murase, Fumihiko</au><au>Hirose, Masaaki</au><au>Kawashima, Ryuta</au><au>Sugiura, Motoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment</atitle><jtitle>Frontiers in human neuroscience</jtitle><addtitle>Front Hum Neurosci</addtitle><date>2022-02-09</date><risdate>2022</risdate><volume>16</volume><spage>754379</spage><epage>754379</epage><pages>754379-754379</pages><issn>1662-5161</issn><eissn>1662-5161</eissn><abstract>Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: accurate lane-keeping during driving (driving accuracy), the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social-cognitive processes on the braking response to pedestrians.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>35221953</pmid><doi>10.3389/fnhum.2022.754379</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5161
ispartof Frontiers in human neuroscience, 2022-02, Vol.16, p.754379-754379
issn 1662-5161
1662-5161
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5d808bb361fd4c88bfe64282289fbc81
source PubMed Central
subjects Brain research
Cognitive ability
driving safety
driving simulator
fMRI
frontoparietal control network
Functional magnetic resonance imaging
Human Neuroscience
Roads & highways
superior temporal sulcus
Traffic accidents & safety
title Neural Correlates Predicting Lane-Keeping and Hazard Detection: An fMRI Study Featuring a Pedestrian-Rich Simulator Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Correlates%20Predicting%20Lane-Keeping%20and%20Hazard%20Detection:%20An%20fMRI%20Study%20Featuring%20a%20Pedestrian-Rich%20Simulator%20Environment&rft.jtitle=Frontiers%20in%20human%20neuroscience&rft.au=Oba,%20Kentaro&rft.date=2022-02-09&rft.volume=16&rft.spage=754379&rft.epage=754379&rft.pages=754379-754379&rft.issn=1662-5161&rft.eissn=1662-5161&rft_id=info:doi/10.3389/fnhum.2022.754379&rft_dat=%3Cproquest_doaj_%3E2627001323%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-555847be81b77a89f842ccff83619259f0f16fa5f04ce6680ebb82c18f5355fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627001323&rft_id=info:pmid/35221953&rfr_iscdi=true