Loading…
Chemical Ordering induced Strengthening in Lightweight Mg Alloys
The influence of structure and composition on precipitation phenomena in Al-bearing BCC/HCP Mg alloys are studied via diffusion couple technique. Interdiffusion induced by the resultant composition gradient results in a change in crystal structure from HCP to BCC in the diffusion zone. The Vickers h...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (19), p.3488 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of structure and composition on precipitation phenomena in Al-bearing BCC/HCP Mg alloys are studied via diffusion couple technique. Interdiffusion induced by the resultant composition gradient results in a change in crystal structure from HCP to BCC in the diffusion zone. The Vickers hardness in the diffusion zone is much higher than that in the Mg–5.5at.%Al and Mg–38at.%Li, which is attributed to the chemical ordering by nano-sized secondary ordered D03–Mg3Al precipitation in the BCC Mg–Li–Al diffusion zone. The reasons for different precipitation in Al-bearing Mg alloys with various matrices are discussed. Generating ordered precipitates can be an effective approach to improve both strength and ductility in HCP Mg alloys. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12193488 |