Loading…

Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy technique...

Full description

Saved in:
Bibliographic Details
Main Author: Tuncel, Nina
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients’ dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201612804002