Loading…

Genetic-Algorithm-Driven Parameter Optimization of Three Representative DAB Controllers for Voltage Stability

In the process of integrating renewable energy sources into DC microgrids, the isolated bidirectional bridge plays a crucial role. Under load disturbances, voltage fluctuations in the microgrid can affect system stability. This study focuses on using a Genetic Algorithm to optimize the parameters of...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-09, Vol.13 (18), p.10374
Main Authors: Du, Wenjie, Chen, Wenjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the process of integrating renewable energy sources into DC microgrids, the isolated bidirectional bridge plays a crucial role. Under load disturbances, voltage fluctuations in the microgrid can affect system stability. This study focuses on using a Genetic Algorithm to optimize the parameters of three typical DAB controllers (PI controller based on pole placement, sliding mode controller, and model predictive controller) with the aim of improving voltage stability, especially during sudden load drops. The results demonstrate that controllers optimized using Genetic Algorithm outperform the methods of pole placement and traditional manual tuning significantly. For the PI controller, the maximum drop rate reduced from 8.00% to 4.00%. The phase margin increased from 123° to 126°. In the case of the sliding mode controller, the maximum drop rate decreased from 7.50% to 5.00%. The phase margin increased from 127° to 155°. As for the model predictive controller, the maximum drop rate reduced from 1.00% to 0.70%. The gain margin increased from 25.8 dB to 26.2 dB. These results highlight the potential of using the Genetic Algorithm in optimizing control parameters, offering the prospect of improving the performance and stability of DC–DC converters.
ISSN:2076-3417
2076-3417
DOI:10.3390/app131810374