Loading…
Interval Quadratic Equations: A Review
In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose coefficients constitute interval variables. This study focuses on interval quadratic equations that contain only one coefficient considered as an...
Saved in:
Published in: | AppliedMath 2023-12, Vol.3 (4), p.909-956 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose coefficients constitute interval variables. This study focuses on interval quadratic equations that contain only one coefficient considered as an interval variable. The four methods reviewed here in order to solve this problem are: (i) the method of classic interval analysis used by Elishakoff and Daphnis, (ii) the direct method based on minimizations and maximizations also used by the same authors, (iii) the method of quantifier elimination used by Ioakimidis, and (iv) the interval parametrization method suggested by Elishakoff and Miglis and again based on minimizations and maximizations. We will also compare the results yielded by all these methods by using the computer algebra system Mathematica for computer evaluations (including quantifier eliminations) in order to conclude which method would be the most efficient way to solve problems relevant to interval quadratic equations. |
---|---|
ISSN: | 2673-9909 2673-9909 |
DOI: | 10.3390/appliedmath3040048 |