Loading…
Load Disaggregation Using Microscopic Power Features and Pattern Recognition
A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing...
Saved in:
Published in: | Energies (Basel) 2019, Vol.12 (14), p.2641 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73 |
container_end_page | |
container_issue | 14 |
container_start_page | 2641 |
container_title | Energies (Basel) |
container_volume | 12 |
creator | de Souza, Wesley Angelino Garcia, Fernando Deluno Marafão, Fernando Pinhabel da Silva, Luiz Carlos Pereira Simões, Marcelo Godoy |
description | A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set. |
doi_str_mv | 10.3390/en12142641 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9</doaj_id><sourcerecordid>2403409085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWGovfoKAN6Ga_7s5SrVaWLGIPYfZbLKk1E1Ntojf3q0V9eRcZhje_HjMQ-ickivONbl2HWVUMCXoERpRrdWUkoIf_5lP0STnNRmKc8o5H6GqitDg25ChbZNroQ-xw6scuhY_BptitnEbLF7Gd5fw3EG_Sy5j6Bq8hL53qcPPzsa2C_vDM3TiYZPd5LuP0Wp-9zJ7mFZP94vZTTW1vNT9VNfeCt8AK8BpzpQuqauZbQqlqQJRFgoaxRyRmljugQhZC1oXpVSeaQoFH6PFgdtEWJttCq-QPkyEYL4WMbUGUh_sxhnppHBMsbKkWihOazVwPJOS-FoD6IF1cWBtU3zbudybddylbrBvmCBcEE1K-a-KUzWgtRCD6vKg2j8uJ-d_vFFi9hGZ34j4J_0NgHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316946944</pqid></control><display><type>article</type><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</creator><creatorcontrib>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</creatorcontrib><description>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en12142641</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Air conditioning ; Algorithms ; Appliances ; Artificial intelligence ; Automatic meter reading ; Classification ; cognitive meters ; Computer engineering ; Computer simulation ; Consumers ; Datasets ; Disaggregation ; Efficiency ; Electric appliances ; Electric power generation ; Electricity ; Electricity consumption ; Embedded systems ; Energy conservation ; Energy consumption ; Energy efficiency ; Energy management ; Energy management systems ; Feasibility studies ; Feature recognition ; Household appliances ; Infrastructure ; Learning algorithms ; load disaggregation ; Machine learning ; NILM ; Pattern recognition ; Power plants ; state machine ; State machines ; Ubiquitous computing ; Virtual power plants ; Waveforms ; Wavelet transforms</subject><ispartof>Energies (Basel), 2019, Vol.12 (14), p.2641</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</citedby><cites>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</cites><orcidid>0000-0003-3525-3297 ; 0000-0002-3431-6359 ; 0000-0003-4124-061X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2403409085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2403409085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>de Souza, Wesley Angelino</creatorcontrib><creatorcontrib>Garcia, Fernando Deluno</creatorcontrib><creatorcontrib>Marafão, Fernando Pinhabel</creatorcontrib><creatorcontrib>da Silva, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Simões, Marcelo Godoy</creatorcontrib><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><title>Energies (Basel)</title><description>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</description><subject>Accuracy</subject><subject>Air conditioning</subject><subject>Algorithms</subject><subject>Appliances</subject><subject>Artificial intelligence</subject><subject>Automatic meter reading</subject><subject>Classification</subject><subject>cognitive meters</subject><subject>Computer engineering</subject><subject>Computer simulation</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Disaggregation</subject><subject>Efficiency</subject><subject>Electric appliances</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Embedded systems</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Feasibility studies</subject><subject>Feature recognition</subject><subject>Household appliances</subject><subject>Infrastructure</subject><subject>Learning algorithms</subject><subject>load disaggregation</subject><subject>Machine learning</subject><subject>NILM</subject><subject>Pattern recognition</subject><subject>Power plants</subject><subject>state machine</subject><subject>State machines</subject><subject>Ubiquitous computing</subject><subject>Virtual power plants</subject><subject>Waveforms</subject><subject>Wavelet transforms</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9LAzEQxYMoWGovfoKAN6Ga_7s5SrVaWLGIPYfZbLKk1E1Ntojf3q0V9eRcZhje_HjMQ-ickivONbl2HWVUMCXoERpRrdWUkoIf_5lP0STnNRmKc8o5H6GqitDg25ChbZNroQ-xw6scuhY_BptitnEbLF7Gd5fw3EG_Sy5j6Bq8hL53qcPPzsa2C_vDM3TiYZPd5LuP0Wp-9zJ7mFZP94vZTTW1vNT9VNfeCt8AK8BpzpQuqauZbQqlqQJRFgoaxRyRmljugQhZC1oXpVSeaQoFH6PFgdtEWJttCq-QPkyEYL4WMbUGUh_sxhnppHBMsbKkWihOazVwPJOS-FoD6IF1cWBtU3zbudybddylbrBvmCBcEE1K-a-KUzWgtRCD6vKg2j8uJ-d_vFFi9hGZ34j4J_0NgHg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>de Souza, Wesley Angelino</creator><creator>Garcia, Fernando Deluno</creator><creator>Marafão, Fernando Pinhabel</creator><creator>da Silva, Luiz Carlos Pereira</creator><creator>Simões, Marcelo Godoy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3525-3297</orcidid><orcidid>https://orcid.org/0000-0002-3431-6359</orcidid><orcidid>https://orcid.org/0000-0003-4124-061X</orcidid></search><sort><creationdate>2019</creationdate><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><author>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Air conditioning</topic><topic>Algorithms</topic><topic>Appliances</topic><topic>Artificial intelligence</topic><topic>Automatic meter reading</topic><topic>Classification</topic><topic>cognitive meters</topic><topic>Computer engineering</topic><topic>Computer simulation</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Disaggregation</topic><topic>Efficiency</topic><topic>Electric appliances</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Embedded systems</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Feasibility studies</topic><topic>Feature recognition</topic><topic>Household appliances</topic><topic>Infrastructure</topic><topic>Learning algorithms</topic><topic>load disaggregation</topic><topic>Machine learning</topic><topic>NILM</topic><topic>Pattern recognition</topic><topic>Power plants</topic><topic>state machine</topic><topic>State machines</topic><topic>Ubiquitous computing</topic><topic>Virtual power plants</topic><topic>Waveforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Wesley Angelino</creatorcontrib><creatorcontrib>Garcia, Fernando Deluno</creatorcontrib><creatorcontrib>Marafão, Fernando Pinhabel</creatorcontrib><creatorcontrib>da Silva, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Simões, Marcelo Godoy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Wesley Angelino</au><au>Garcia, Fernando Deluno</au><au>Marafão, Fernando Pinhabel</au><au>da Silva, Luiz Carlos Pereira</au><au>Simões, Marcelo Godoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</atitle><jtitle>Energies (Basel)</jtitle><date>2019</date><risdate>2019</risdate><volume>12</volume><issue>14</issue><spage>2641</spage><pages>2641-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en12142641</doi><orcidid>https://orcid.org/0000-0003-3525-3297</orcidid><orcidid>https://orcid.org/0000-0002-3431-6359</orcidid><orcidid>https://orcid.org/0000-0003-4124-061X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2019, Vol.12 (14), p.2641 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Air conditioning Algorithms Appliances Artificial intelligence Automatic meter reading Classification cognitive meters Computer engineering Computer simulation Consumers Datasets Disaggregation Efficiency Electric appliances Electric power generation Electricity Electricity consumption Embedded systems Energy conservation Energy consumption Energy efficiency Energy management Energy management systems Feasibility studies Feature recognition Household appliances Infrastructure Learning algorithms load disaggregation Machine learning NILM Pattern recognition Power plants state machine State machines Ubiquitous computing Virtual power plants Waveforms Wavelet transforms |
title | Load Disaggregation Using Microscopic Power Features and Pattern Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Load%20Disaggregation%20Using%20Microscopic%20Power%20Features%20and%20Pattern%20Recognition&rft.jtitle=Energies%20(Basel)&rft.au=de%20Souza,%20Wesley%20Angelino&rft.date=2019&rft.volume=12&rft.issue=14&rft.spage=2641&rft.pages=2641-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en12142641&rft_dat=%3Cproquest_doaj_%3E2403409085%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316946944&rft_id=info:pmid/&rfr_iscdi=true |