Loading…

Load Disaggregation Using Microscopic Power Features and Pattern Recognition

A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2019, Vol.12 (14), p.2641
Main Authors: de Souza, Wesley Angelino, Garcia, Fernando Deluno, Marafão, Fernando Pinhabel, da Silva, Luiz Carlos Pereira, Simões, Marcelo Godoy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73
cites cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73
container_end_page
container_issue 14
container_start_page 2641
container_title Energies (Basel)
container_volume 12
creator de Souza, Wesley Angelino
Garcia, Fernando Deluno
Marafão, Fernando Pinhabel
da Silva, Luiz Carlos Pereira
Simões, Marcelo Godoy
description A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.
doi_str_mv 10.3390/en12142641
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9</doaj_id><sourcerecordid>2403409085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWGovfoKAN6Ga_7s5SrVaWLGIPYfZbLKk1E1Ntojf3q0V9eRcZhje_HjMQ-ickivONbl2HWVUMCXoERpRrdWUkoIf_5lP0STnNRmKc8o5H6GqitDg25ChbZNroQ-xw6scuhY_BptitnEbLF7Gd5fw3EG_Sy5j6Bq8hL53qcPPzsa2C_vDM3TiYZPd5LuP0Wp-9zJ7mFZP94vZTTW1vNT9VNfeCt8AK8BpzpQuqauZbQqlqQJRFgoaxRyRmljugQhZC1oXpVSeaQoFH6PFgdtEWJttCq-QPkyEYL4WMbUGUh_sxhnppHBMsbKkWihOazVwPJOS-FoD6IF1cWBtU3zbudybddylbrBvmCBcEE1K-a-KUzWgtRCD6vKg2j8uJ-d_vFFi9hGZ34j4J_0NgHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316946944</pqid></control><display><type>article</type><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</creator><creatorcontrib>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</creatorcontrib><description>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en12142641</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Air conditioning ; Algorithms ; Appliances ; Artificial intelligence ; Automatic meter reading ; Classification ; cognitive meters ; Computer engineering ; Computer simulation ; Consumers ; Datasets ; Disaggregation ; Efficiency ; Electric appliances ; Electric power generation ; Electricity ; Electricity consumption ; Embedded systems ; Energy conservation ; Energy consumption ; Energy efficiency ; Energy management ; Energy management systems ; Feasibility studies ; Feature recognition ; Household appliances ; Infrastructure ; Learning algorithms ; load disaggregation ; Machine learning ; NILM ; Pattern recognition ; Power plants ; state machine ; State machines ; Ubiquitous computing ; Virtual power plants ; Waveforms ; Wavelet transforms</subject><ispartof>Energies (Basel), 2019, Vol.12 (14), p.2641</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</citedby><cites>FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</cites><orcidid>0000-0003-3525-3297 ; 0000-0002-3431-6359 ; 0000-0003-4124-061X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2403409085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2403409085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>de Souza, Wesley Angelino</creatorcontrib><creatorcontrib>Garcia, Fernando Deluno</creatorcontrib><creatorcontrib>Marafão, Fernando Pinhabel</creatorcontrib><creatorcontrib>da Silva, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Simões, Marcelo Godoy</creatorcontrib><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><title>Energies (Basel)</title><description>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</description><subject>Accuracy</subject><subject>Air conditioning</subject><subject>Algorithms</subject><subject>Appliances</subject><subject>Artificial intelligence</subject><subject>Automatic meter reading</subject><subject>Classification</subject><subject>cognitive meters</subject><subject>Computer engineering</subject><subject>Computer simulation</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Disaggregation</subject><subject>Efficiency</subject><subject>Electric appliances</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Embedded systems</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Feasibility studies</subject><subject>Feature recognition</subject><subject>Household appliances</subject><subject>Infrastructure</subject><subject>Learning algorithms</subject><subject>load disaggregation</subject><subject>Machine learning</subject><subject>NILM</subject><subject>Pattern recognition</subject><subject>Power plants</subject><subject>state machine</subject><subject>State machines</subject><subject>Ubiquitous computing</subject><subject>Virtual power plants</subject><subject>Waveforms</subject><subject>Wavelet transforms</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9LAzEQxYMoWGovfoKAN6Ga_7s5SrVaWLGIPYfZbLKk1E1Ntojf3q0V9eRcZhje_HjMQ-ickivONbl2HWVUMCXoERpRrdWUkoIf_5lP0STnNRmKc8o5H6GqitDg25ChbZNroQ-xw6scuhY_BptitnEbLF7Gd5fw3EG_Sy5j6Bq8hL53qcPPzsa2C_vDM3TiYZPd5LuP0Wp-9zJ7mFZP94vZTTW1vNT9VNfeCt8AK8BpzpQuqauZbQqlqQJRFgoaxRyRmljugQhZC1oXpVSeaQoFH6PFgdtEWJttCq-QPkyEYL4WMbUGUh_sxhnppHBMsbKkWihOazVwPJOS-FoD6IF1cWBtU3zbudybddylbrBvmCBcEE1K-a-KUzWgtRCD6vKg2j8uJ-d_vFFi9hGZ34j4J_0NgHg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>de Souza, Wesley Angelino</creator><creator>Garcia, Fernando Deluno</creator><creator>Marafão, Fernando Pinhabel</creator><creator>da Silva, Luiz Carlos Pereira</creator><creator>Simões, Marcelo Godoy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3525-3297</orcidid><orcidid>https://orcid.org/0000-0002-3431-6359</orcidid><orcidid>https://orcid.org/0000-0003-4124-061X</orcidid></search><sort><creationdate>2019</creationdate><title>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</title><author>de Souza, Wesley Angelino ; Garcia, Fernando Deluno ; Marafão, Fernando Pinhabel ; da Silva, Luiz Carlos Pereira ; Simões, Marcelo Godoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Air conditioning</topic><topic>Algorithms</topic><topic>Appliances</topic><topic>Artificial intelligence</topic><topic>Automatic meter reading</topic><topic>Classification</topic><topic>cognitive meters</topic><topic>Computer engineering</topic><topic>Computer simulation</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Disaggregation</topic><topic>Efficiency</topic><topic>Electric appliances</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Embedded systems</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Feasibility studies</topic><topic>Feature recognition</topic><topic>Household appliances</topic><topic>Infrastructure</topic><topic>Learning algorithms</topic><topic>load disaggregation</topic><topic>Machine learning</topic><topic>NILM</topic><topic>Pattern recognition</topic><topic>Power plants</topic><topic>state machine</topic><topic>State machines</topic><topic>Ubiquitous computing</topic><topic>Virtual power plants</topic><topic>Waveforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Wesley Angelino</creatorcontrib><creatorcontrib>Garcia, Fernando Deluno</creatorcontrib><creatorcontrib>Marafão, Fernando Pinhabel</creatorcontrib><creatorcontrib>da Silva, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Simões, Marcelo Godoy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Wesley Angelino</au><au>Garcia, Fernando Deluno</au><au>Marafão, Fernando Pinhabel</au><au>da Silva, Luiz Carlos Pereira</au><au>Simões, Marcelo Godoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Load Disaggregation Using Microscopic Power Features and Pattern Recognition</atitle><jtitle>Energies (Basel)</jtitle><date>2019</date><risdate>2019</risdate><volume>12</volume><issue>14</issue><spage>2641</spage><pages>2641-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en12142641</doi><orcidid>https://orcid.org/0000-0003-3525-3297</orcidid><orcidid>https://orcid.org/0000-0002-3431-6359</orcidid><orcidid>https://orcid.org/0000-0003-4124-061X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2019, Vol.12 (14), p.2641
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5e54e26288194631b6785f2550fb9aa9
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Air conditioning
Algorithms
Appliances
Artificial intelligence
Automatic meter reading
Classification
cognitive meters
Computer engineering
Computer simulation
Consumers
Datasets
Disaggregation
Efficiency
Electric appliances
Electric power generation
Electricity
Electricity consumption
Embedded systems
Energy conservation
Energy consumption
Energy efficiency
Energy management
Energy management systems
Feasibility studies
Feature recognition
Household appliances
Infrastructure
Learning algorithms
load disaggregation
Machine learning
NILM
Pattern recognition
Power plants
state machine
State machines
Ubiquitous computing
Virtual power plants
Waveforms
Wavelet transforms
title Load Disaggregation Using Microscopic Power Features and Pattern Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Load%20Disaggregation%20Using%20Microscopic%20Power%20Features%20and%20Pattern%20Recognition&rft.jtitle=Energies%20(Basel)&rft.au=de%20Souza,%20Wesley%20Angelino&rft.date=2019&rft.volume=12&rft.issue=14&rft.spage=2641&rft.pages=2641-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en12142641&rft_dat=%3Cproquest_doaj_%3E2403409085%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9bfc4fda27ae9326981eb2cd76916a4876ad62e0590c3fa045b41b7856f291a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316946944&rft_id=info:pmid/&rfr_iscdi=true