Loading…
SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors
The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (20), p.7711 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3 |
container_end_page | |
container_issue | 20 |
container_start_page | 7711 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Irshad, Muhammad Tausif Nisar, Muhammad Adeel Huang, Xinyu Hartz, Jana Flak, Olaf Li, Frédéric Gouverneur, Philip Piet, Artur Oltmanns, Kerstin M Grzegorzek, Marcin |
description | The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP). |
doi_str_mv | 10.3390/s22207711 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e7d8c3aa9034feb861dc7d11d6e5013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746532591</galeid><doaj_id>oai_doaj_org_article_5e7d8c3aa9034feb861dc7d11d6e5013</doaj_id><sourcerecordid>A746532591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3</originalsourceid><addsrcrecordid>eNptkt9rFDEQgBdRsFYf_A8WfNGHq_m52fggHNXawomIFh_DbDK7zbGXnMmu4H_fbK9UTyQPSWa--YaEqaqXlJxxrsnbzBgjSlH6qDqhgolVW-6P_zo_rZ7lvCWEcc7bk-rrNwwZL-cwYHpXfwZ74wPWG4QUfBjq9X6fYgnWU6wPUP0BJ7STj6G-zgvyo7DQjVgvppjy8-pJD2PGF_f7aXV98fH7-eVq8-XT1fl6s7JS6WnFFcNGNBoIBxCN6oXsOmjLXbrWEsY4Qy1s5xww1QAhlvQCuNSCliQ6flpdHbwuwtbsk99B-m0ieHMXiGkwkCZvRzQSVXGWPppw0WPXNtRZ5Sh1DUpCeXG9P7j2c7dDZzFMCcYj6XEm-BszxF9GN0QzKorg9b0gxZ8z5snsfLY4jhAwztkwxbSkStz1evUPuo1zCuWrFqqVnLZC_6EGKA_woY-lr12kZq1EIzmTmhbq7D9UWQ533saAvS_xo4I3hwKbYs4J-4c3UmKWATIPA8RvATtHtbA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728531849</pqid></control><display><type>article</type><title>SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Irshad, Muhammad Tausif ; Nisar, Muhammad Adeel ; Huang, Xinyu ; Hartz, Jana ; Flak, Olaf ; Li, Frédéric ; Gouverneur, Philip ; Piet, Artur ; Oltmanns, Kerstin M ; Grzegorzek, Marcin</creator><creatorcontrib>Irshad, Muhammad Tausif ; Nisar, Muhammad Adeel ; Huang, Xinyu ; Hartz, Jana ; Flak, Olaf ; Li, Frédéric ; Gouverneur, Philip ; Piet, Artur ; Oltmanns, Kerstin M ; Grzegorzek, Marcin</creatorcontrib><description>The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22207711</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood volume ; Body weight ; Chronic diseases ; Classification ; Connectivity ; Data processing ; Epidemiology ; Eyewear ; Hormones ; hunger ; Investigations ; Machine learning ; multimodal sensing ; Neural networks ; non-invasive sensing ; Overweight ; Pattern recognition ; Perception ; physiological signals ; Physiology ; satiety ; Sensors ; Signal processing ; Smartwatches ; Thermopiles ; Wearable technology</subject><ispartof>Sensors (Basel, Switzerland), 2022-10, Vol.22 (20), p.7711</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3</citedby><cites>FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3</cites><orcidid>0000-0003-3210-3891 ; 0000-0003-2110-4207 ; 0000-0001-8610-2291 ; 0000-0003-3288-750X ; 0000-0003-4581-4107 ; 0000-0003-4877-8287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728531849/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728531849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,38497,43876,44571,53772,53774,74161,74875</link.rule.ids></links><search><creatorcontrib>Irshad, Muhammad Tausif</creatorcontrib><creatorcontrib>Nisar, Muhammad Adeel</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Hartz, Jana</creatorcontrib><creatorcontrib>Flak, Olaf</creatorcontrib><creatorcontrib>Li, Frédéric</creatorcontrib><creatorcontrib>Gouverneur, Philip</creatorcontrib><creatorcontrib>Piet, Artur</creatorcontrib><creatorcontrib>Oltmanns, Kerstin M</creatorcontrib><creatorcontrib>Grzegorzek, Marcin</creatorcontrib><title>SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors</title><title>Sensors (Basel, Switzerland)</title><description>The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).</description><subject>Blood volume</subject><subject>Body weight</subject><subject>Chronic diseases</subject><subject>Classification</subject><subject>Connectivity</subject><subject>Data processing</subject><subject>Epidemiology</subject><subject>Eyewear</subject><subject>Hormones</subject><subject>hunger</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>multimodal sensing</subject><subject>Neural networks</subject><subject>non-invasive sensing</subject><subject>Overweight</subject><subject>Pattern recognition</subject><subject>Perception</subject><subject>physiological signals</subject><subject>Physiology</subject><subject>satiety</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Smartwatches</subject><subject>Thermopiles</subject><subject>Wearable technology</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9rFDEQgBdRsFYf_A8WfNGHq_m52fggHNXawomIFh_DbDK7zbGXnMmu4H_fbK9UTyQPSWa--YaEqaqXlJxxrsnbzBgjSlH6qDqhgolVW-6P_zo_rZ7lvCWEcc7bk-rrNwwZL-cwYHpXfwZ74wPWG4QUfBjq9X6fYgnWU6wPUP0BJ7STj6G-zgvyo7DQjVgvppjy8-pJD2PGF_f7aXV98fH7-eVq8-XT1fl6s7JS6WnFFcNGNBoIBxCN6oXsOmjLXbrWEsY4Qy1s5xww1QAhlvQCuNSCliQ6flpdHbwuwtbsk99B-m0ieHMXiGkwkCZvRzQSVXGWPppw0WPXNtRZ5Sh1DUpCeXG9P7j2c7dDZzFMCcYj6XEm-BszxF9GN0QzKorg9b0gxZ8z5snsfLY4jhAwztkwxbSkStz1evUPuo1zCuWrFqqVnLZC_6EGKA_woY-lr12kZq1EIzmTmhbq7D9UWQ533saAvS_xo4I3hwKbYs4J-4c3UmKWATIPA8RvATtHtbA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Irshad, Muhammad Tausif</creator><creator>Nisar, Muhammad Adeel</creator><creator>Huang, Xinyu</creator><creator>Hartz, Jana</creator><creator>Flak, Olaf</creator><creator>Li, Frédéric</creator><creator>Gouverneur, Philip</creator><creator>Piet, Artur</creator><creator>Oltmanns, Kerstin M</creator><creator>Grzegorzek, Marcin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3210-3891</orcidid><orcidid>https://orcid.org/0000-0003-2110-4207</orcidid><orcidid>https://orcid.org/0000-0001-8610-2291</orcidid><orcidid>https://orcid.org/0000-0003-3288-750X</orcidid><orcidid>https://orcid.org/0000-0003-4581-4107</orcidid><orcidid>https://orcid.org/0000-0003-4877-8287</orcidid></search><sort><creationdate>20221001</creationdate><title>SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors</title><author>Irshad, Muhammad Tausif ; Nisar, Muhammad Adeel ; Huang, Xinyu ; Hartz, Jana ; Flak, Olaf ; Li, Frédéric ; Gouverneur, Philip ; Piet, Artur ; Oltmanns, Kerstin M ; Grzegorzek, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood volume</topic><topic>Body weight</topic><topic>Chronic diseases</topic><topic>Classification</topic><topic>Connectivity</topic><topic>Data processing</topic><topic>Epidemiology</topic><topic>Eyewear</topic><topic>Hormones</topic><topic>hunger</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>multimodal sensing</topic><topic>Neural networks</topic><topic>non-invasive sensing</topic><topic>Overweight</topic><topic>Pattern recognition</topic><topic>Perception</topic><topic>physiological signals</topic><topic>Physiology</topic><topic>satiety</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Smartwatches</topic><topic>Thermopiles</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irshad, Muhammad Tausif</creatorcontrib><creatorcontrib>Nisar, Muhammad Adeel</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Hartz, Jana</creatorcontrib><creatorcontrib>Flak, Olaf</creatorcontrib><creatorcontrib>Li, Frédéric</creatorcontrib><creatorcontrib>Gouverneur, Philip</creatorcontrib><creatorcontrib>Piet, Artur</creatorcontrib><creatorcontrib>Oltmanns, Kerstin M</creatorcontrib><creatorcontrib>Grzegorzek, Marcin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irshad, Muhammad Tausif</au><au>Nisar, Muhammad Adeel</au><au>Huang, Xinyu</au><au>Hartz, Jana</au><au>Flak, Olaf</au><au>Li, Frédéric</au><au>Gouverneur, Philip</au><au>Piet, Artur</au><au>Oltmanns, Kerstin M</au><au>Grzegorzek, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>22</volume><issue>20</issue><spage>7711</spage><pages>7711-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s22207711</doi><orcidid>https://orcid.org/0000-0003-3210-3891</orcidid><orcidid>https://orcid.org/0000-0003-2110-4207</orcidid><orcidid>https://orcid.org/0000-0001-8610-2291</orcidid><orcidid>https://orcid.org/0000-0003-3288-750X</orcidid><orcidid>https://orcid.org/0000-0003-4581-4107</orcidid><orcidid>https://orcid.org/0000-0003-4877-8287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-10, Vol.22 (20), p.7711 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5e7d8c3aa9034feb861dc7d11d6e5013 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Blood volume Body weight Chronic diseases Classification Connectivity Data processing Epidemiology Eyewear Hormones hunger Investigations Machine learning multimodal sensing Neural networks non-invasive sensing Overweight Pattern recognition Perception physiological signals Physiology satiety Sensors Signal processing Smartwatches Thermopiles Wearable technology |
title | SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SenseHunger:%20Machine%20Learning%20Approach%20to%20Hunger%20Detection%20Using%20Wearable%20Sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Irshad,%20Muhammad%20Tausif&rft.date=2022-10-01&rft.volume=22&rft.issue=20&rft.spage=7711&rft.pages=7711-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22207711&rft_dat=%3Cgale_doaj_%3EA746532591%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-372e6469a03aa467f45bba89a05d8c02232e94cbdda276a00c0f4a35941022ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728531849&rft_id=info:pmid/&rft_galeid=A746532591&rfr_iscdi=true |