Loading…

Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments

Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz a...

Full description

Saved in:
Bibliographic Details
Published in:Hydrology and earth system sciences 2014-08, Vol.18 (8), p.3151-3163
Main Authors: Lemke, D, González-Pinzón, R, Liao, Z, Wöhling, T, Osenbrück, K, Haggerty, R, Cirpka, O. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz and Rru transport, sorption, and transformation, consisting of 4 column and 72 batch tests using 2 sediments with different physicochemical properties under neutral (pH = 7) and alkaline (pH = 9) conditions. The study aimed at identifying the key processes of reactive transport of Raz and Rru in streambed sediments and the experimental setup best suited for their determination. Data from column experiments were simulated by a travel-time-based model accounting for physical transport, equilibrium and kinetic sorption, and three first-order reactions. We derived the travel-time distributions directly from the breakthrough curve (BTC) of the conservative tracer, fluorescein, rather than from fitting an advective-dispersive transport model, and inferred from those distributions the transfer functions of Raz and Rru, which provided conclusive approximations of the measured BTCs. The most likely reactive transport parameters and their uncertainty were determined by a Markov chain–Monte Carlo approach. Sorption isotherms of both compounds were obtained from batch experiments. We found that kinetic sorption dominates sorption of both Raz and Rru, with characteristic timescales of sorption in the order of 12 to 298 min. Linear sorption models for both Raz and Rru appeared adequate for concentrations that are typically applied in field tracer tests. The proposed two-site sorption model helps to interpret transient tracer tests using the Raz–Rru system.
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-18-3151-2014