Loading…

Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma

TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 muta...

Full description

Saved in:
Bibliographic Details
Published in:Hematology (Luxembourg) 2024-12, Vol.29 (1), p.2377850
Main Authors: Tang, Xiaoyan, Chen, Yongping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c300t-9ed6454f0e3616642e3ae421d5b7076679f50bd20625e97e436112fd3d79f6273
container_end_page
container_issue 1
container_start_page 2377850
container_title Hematology (Luxembourg)
container_volume 29
creator Tang, Xiaoyan
Chen, Yongping
description TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (  
doi_str_mv 10.1080/16078454.2024.2377850
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e81d2beb85648229e19c80bac0aa9ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5e81d2beb85648229e19c80bac0aa9ae</doaj_id><sourcerecordid>3081300482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9ed6454f0e3616642e3ae421d5b7076679f50bd20625e97e436112fd3d79f6273</originalsourceid><addsrcrecordid>eNpNUU1v3CAQRVWr5vMntOLYyyYDGLCPVdSPlSKlh_SMxma8JcVma1hV--_LdjdRLjDzZt6bgcfYBwE3Alq4FQZs2-jmRoKsh7K21fCGnR_w1aHw9lV8xi5yfgKQEiy8Z2eqAyGlsOfs99rTXMIYBiwhzRxnz7dL2swplzDUFOM-h8zTyCcq2KdY0Q3NlDnmnIaAhTz_G8ov_vhDKz7tylEozDWOJWwj8WlPMU14xd6NGDNdn-5L9vPrl8e776v7h2_ru8_3q0EBlFVH3tSdRyBlhDGNJIXUSOF1b8EaY7tRQ-8lGKmps9TUNiFHr3ytGGnVJVsfdX3CJ7ddwoTL3iUM7j-Qlo3Dpb4uktPUCi976lttmlbKjkQ3tNDjAIgdUtX6dNSqn_JnR7m4KeSBYsSZ0i47Ba2oW1dubdXH1mFJOS80vowW4A6euWfP3MEzd_Ks8j6eRuz6ifwL69kk9Q8HdpGg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081300482</pqid></control><display><type>article</type><title>Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma</title><source>Taylor &amp; Francis Open Access Journals</source><creator>Tang, Xiaoyan ; Chen, Yongping</creator><creatorcontrib>Tang, Xiaoyan ; Chen, Yongping</creatorcontrib><description>TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (  &lt; 0.001). RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.</description><identifier>ISSN: 1607-8454</identifier><identifier>EISSN: 1607-8454</identifier><identifier>DOI: 10.1080/16078454.2024.2377850</identifier><identifier>PMID: 39012217</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>bioinformatics ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Male ; Middle Aged ; Multiple myeloma ; Multiple Myeloma - genetics ; Multiple Myeloma - mortality ; Mutation ; Prognosis ; Ribonucleoside Diphosphate Reductase - genetics ; RRM2 ; TP53 ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Hematology (Luxembourg), 2024-12, Vol.29 (1), p.2377850</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-9ed6454f0e3616642e3ae421d5b7076679f50bd20625e97e436112fd3d79f6273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Yongping</creatorcontrib><title>Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma</title><title>Hematology (Luxembourg)</title><addtitle>Hematology</addtitle><description>TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (  &lt; 0.001). RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.</description><subject>bioinformatics</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - genetics</subject><subject>Multiple Myeloma - mortality</subject><subject>Mutation</subject><subject>Prognosis</subject><subject>Ribonucleoside Diphosphate Reductase - genetics</subject><subject>RRM2</subject><subject>TP53</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>1607-8454</issn><issn>1607-8454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUU1v3CAQRVWr5vMntOLYyyYDGLCPVdSPlSKlh_SMxma8JcVma1hV--_LdjdRLjDzZt6bgcfYBwE3Alq4FQZs2-jmRoKsh7K21fCGnR_w1aHw9lV8xi5yfgKQEiy8Z2eqAyGlsOfs99rTXMIYBiwhzRxnz7dL2swplzDUFOM-h8zTyCcq2KdY0Q3NlDnmnIaAhTz_G8ov_vhDKz7tylEozDWOJWwj8WlPMU14xd6NGDNdn-5L9vPrl8e776v7h2_ru8_3q0EBlFVH3tSdRyBlhDGNJIXUSOF1b8EaY7tRQ-8lGKmps9TUNiFHr3ytGGnVJVsfdX3CJ7ddwoTL3iUM7j-Qlo3Dpb4uktPUCi976lttmlbKjkQ3tNDjAIgdUtX6dNSqn_JnR7m4KeSBYsSZ0i47Ba2oW1dubdXH1mFJOS80vowW4A6euWfP3MEzd_Ks8j6eRuz6ifwL69kk9Q8HdpGg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Tang, Xiaoyan</creator><creator>Chen, Yongping</creator><general>Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>202412</creationdate><title>Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma</title><author>Tang, Xiaoyan ; Chen, Yongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9ed6454f0e3616642e3ae421d5b7076679f50bd20625e97e436112fd3d79f6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioinformatics</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - genetics</topic><topic>Multiple Myeloma - mortality</topic><topic>Mutation</topic><topic>Prognosis</topic><topic>Ribonucleoside Diphosphate Reductase - genetics</topic><topic>RRM2</topic><topic>TP53</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Yongping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Hematology (Luxembourg)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiaoyan</au><au>Chen, Yongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma</atitle><jtitle>Hematology (Luxembourg)</jtitle><addtitle>Hematology</addtitle><date>2024-12</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>2377850</spage><pages>2377850-</pages><issn>1607-8454</issn><eissn>1607-8454</eissn><abstract>TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (  &lt; 0.001). RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>39012217</pmid><doi>10.1080/16078454.2024.2377850</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-8454
ispartof Hematology (Luxembourg), 2024-12, Vol.29 (1), p.2377850
issn 1607-8454
1607-8454
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5e81d2beb85648229e19c80bac0aa9ae
source Taylor & Francis Open Access Journals
subjects bioinformatics
Female
Gene Expression Regulation, Neoplastic
Humans
Male
Middle Aged
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - mortality
Mutation
Prognosis
Ribonucleoside Diphosphate Reductase - genetics
RRM2
TP53
Tumor Suppressor Protein p53 - genetics
title Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20prognostic%20analysis%20of%20metabolic%20genes%20associated%20with%20TP53%20mutation%20in%20multiple%20myeloma&rft.jtitle=Hematology%20(Luxembourg)&rft.au=Tang,%20Xiaoyan&rft.date=2024-12&rft.volume=29&rft.issue=1&rft.spage=2377850&rft.pages=2377850-&rft.issn=1607-8454&rft.eissn=1607-8454&rft_id=info:doi/10.1080/16078454.2024.2377850&rft_dat=%3Cproquest_doaj_%3E3081300482%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-9ed6454f0e3616642e3ae421d5b7076679f50bd20625e97e436112fd3d79f6273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081300482&rft_id=info:pmid/39012217&rfr_iscdi=true