Loading…

Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation

The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutics 2022-07, Vol.14 (8), p.1526
Main Authors: Luengo, Yurena, Díaz-Riascos, Zamira V, García-Soriano, David, Teran, Francisco J, Artés-Ibáñez, Emilio J, Ibarrola, Oihane, Somoza, Álvaro, Miranda, Rodolfo, Schwartz, Simó, Abasolo, Ibane, Salas, Gorka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3
cites cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3
container_end_page
container_issue 8
container_start_page 1526
container_title Pharmaceutics
container_volume 14
creator Luengo, Yurena
Díaz-Riascos, Zamira V
García-Soriano, David
Teran, Francisco J
Artés-Ibáñez, Emilio J
Ibarrola, Oihane
Somoza, Álvaro
Miranda, Rodolfo
Schwartz, Simó
Abasolo, Ibane
Salas, Gorka
description The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.
doi_str_mv 10.3390/pharmaceutics14081526
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724768623</galeid><doaj_id>oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00</doaj_id><sourcerecordid>A724768623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</originalsourceid><addsrcrecordid>eNptUsFuEzEQXSEQrUI_AckSFy4pu2t7174gRSmlkQq9UK6W1x5vHO3awd4UeuHbmZAINaj2waOZN-_5jaYo3lblJaWy_LBd6zRqA7vJm1yxUlS8bl4U55WUcs5kTV8-ic-Ki5w3JR5KK0Hl6-KMciFpK-rz4ve1D0CWMUwpDiQ6sgrku3-I5IvuAyA9uXncQprWkEavyX32oSerFAO5--UtkK86xK1OCBwgk59-WpMr7xwkCBPS6gnxmehgyRX0CWAvsegx6rEUw5vildNDhovjOyvurz99W97Mb-8-r5aL27nhTE7zTjAped2azlItKTWcgqs0QMWEZqxttGUOBOPcWktrw7oWOl1S3jnXli3QWbE68NqoN2qb_KjTo4raq7-JmHp1NKE4SN4YaUCiqq1Zx0TDOl1JKhgADnFWfDxwbXfdCNag06SHE9LTSvBr1ccHhR-vWFMjwfsjQYo_dpAnNfpsYBh0gLjLqm7Qq-CtaBD67j_oJu5SwFGpui0bREr6BNVrNOCDi6hr9qRq0dY4HoGqiLp8BoXXwuhNDOA85k8a-KHBpJhzAvfPY1Wq_R6qZ_eQ_gFfXtN1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706269936</pqid></control><display><type>article</type><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OpenAccess)</source><creator>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</creator><creatorcontrib>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</creatorcontrib><description>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</description><identifier>ISSN: 1999-4923</identifier><identifier>EISSN: 1999-4923</identifier><identifier>DOI: 10.3390/pharmaceutics14081526</identifier><identifier>PMID: 35893782</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Biocompatibility ; cancer ; Cancer therapies ; Care and treatment ; Chemotherapy ; controlled heat in vivo ; Diagnosis ; Ferric oxide ; Fever ; Health aspects ; Heat ; Hyperthermia ; Magnetic fields ; magnetic hyperthermia ; Nanomaterials ; Nanoparticles ; Optics ; Pancreatic cancer ; Patient outcomes ; Properties ; Temperature ; Thermotherapy ; Tumors</subject><ispartof>Pharmaceutics, 2022-07, Vol.14 (8), p.1526</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</citedby><cites>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</cites><orcidid>0000-0002-9089-6925 ; 0000-0001-9873-435X ; 0000-0002-1196-8813 ; 0000-0001-8297-7971 ; 0000-0002-2466-6208 ; 0000-0001-5970-6276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706269936/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706269936?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Luengo, Yurena</creatorcontrib><creatorcontrib>Díaz-Riascos, Zamira V</creatorcontrib><creatorcontrib>García-Soriano, David</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Artés-Ibáñez, Emilio J</creatorcontrib><creatorcontrib>Ibarrola, Oihane</creatorcontrib><creatorcontrib>Somoza, Álvaro</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Schwartz, Simó</creatorcontrib><creatorcontrib>Abasolo, Ibane</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><title>Pharmaceutics</title><description>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Chemotherapy</subject><subject>controlled heat in vivo</subject><subject>Diagnosis</subject><subject>Ferric oxide</subject><subject>Fever</subject><subject>Health aspects</subject><subject>Heat</subject><subject>Hyperthermia</subject><subject>Magnetic fields</subject><subject>magnetic hyperthermia</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optics</subject><subject>Pancreatic cancer</subject><subject>Patient outcomes</subject><subject>Properties</subject><subject>Temperature</subject><subject>Thermotherapy</subject><subject>Tumors</subject><issn>1999-4923</issn><issn>1999-4923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFuEzEQXSEQrUI_AckSFy4pu2t7174gRSmlkQq9UK6W1x5vHO3awd4UeuHbmZAINaj2waOZN-_5jaYo3lblJaWy_LBd6zRqA7vJm1yxUlS8bl4U55WUcs5kTV8-ic-Ki5w3JR5KK0Hl6-KMciFpK-rz4ve1D0CWMUwpDiQ6sgrku3-I5IvuAyA9uXncQprWkEavyX32oSerFAO5--UtkK86xK1OCBwgk59-WpMr7xwkCBPS6gnxmehgyRX0CWAvsegx6rEUw5vildNDhovjOyvurz99W97Mb-8-r5aL27nhTE7zTjAped2azlItKTWcgqs0QMWEZqxttGUOBOPcWktrw7oWOl1S3jnXli3QWbE68NqoN2qb_KjTo4raq7-JmHp1NKE4SN4YaUCiqq1Zx0TDOl1JKhgADnFWfDxwbXfdCNag06SHE9LTSvBr1ccHhR-vWFMjwfsjQYo_dpAnNfpsYBh0gLjLqm7Qq-CtaBD67j_oJu5SwFGpui0bREr6BNVrNOCDi6hr9qRq0dY4HoGqiLp8BoXXwuhNDOA85k8a-KHBpJhzAvfPY1Wq_R6qZ_eQ_gFfXtN1</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Luengo, Yurena</creator><creator>Díaz-Riascos, Zamira V</creator><creator>García-Soriano, David</creator><creator>Teran, Francisco J</creator><creator>Artés-Ibáñez, Emilio J</creator><creator>Ibarrola, Oihane</creator><creator>Somoza, Álvaro</creator><creator>Miranda, Rodolfo</creator><creator>Schwartz, Simó</creator><creator>Abasolo, Ibane</creator><creator>Salas, Gorka</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9089-6925</orcidid><orcidid>https://orcid.org/0000-0001-9873-435X</orcidid><orcidid>https://orcid.org/0000-0002-1196-8813</orcidid><orcidid>https://orcid.org/0000-0001-8297-7971</orcidid><orcidid>https://orcid.org/0000-0002-2466-6208</orcidid><orcidid>https://orcid.org/0000-0001-5970-6276</orcidid></search><sort><creationdate>20220722</creationdate><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><author>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Chemotherapy</topic><topic>controlled heat in vivo</topic><topic>Diagnosis</topic><topic>Ferric oxide</topic><topic>Fever</topic><topic>Health aspects</topic><topic>Heat</topic><topic>Hyperthermia</topic><topic>Magnetic fields</topic><topic>magnetic hyperthermia</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optics</topic><topic>Pancreatic cancer</topic><topic>Patient outcomes</topic><topic>Properties</topic><topic>Temperature</topic><topic>Thermotherapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luengo, Yurena</creatorcontrib><creatorcontrib>Díaz-Riascos, Zamira V</creatorcontrib><creatorcontrib>García-Soriano, David</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Artés-Ibáñez, Emilio J</creatorcontrib><creatorcontrib>Ibarrola, Oihane</creatorcontrib><creatorcontrib>Somoza, Álvaro</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Schwartz, Simó</creatorcontrib><creatorcontrib>Abasolo, Ibane</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luengo, Yurena</au><au>Díaz-Riascos, Zamira V</au><au>García-Soriano, David</au><au>Teran, Francisco J</au><au>Artés-Ibáñez, Emilio J</au><au>Ibarrola, Oihane</au><au>Somoza, Álvaro</au><au>Miranda, Rodolfo</au><au>Schwartz, Simó</au><au>Abasolo, Ibane</au><au>Salas, Gorka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</atitle><jtitle>Pharmaceutics</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1526</spage><pages>1526-</pages><issn>1999-4923</issn><eissn>1999-4923</eissn><abstract>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893782</pmid><doi>10.3390/pharmaceutics14081526</doi><orcidid>https://orcid.org/0000-0002-9089-6925</orcidid><orcidid>https://orcid.org/0000-0001-9873-435X</orcidid><orcidid>https://orcid.org/0000-0002-1196-8813</orcidid><orcidid>https://orcid.org/0000-0001-8297-7971</orcidid><orcidid>https://orcid.org/0000-0002-2466-6208</orcidid><orcidid>https://orcid.org/0000-0001-5970-6276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4923
ispartof Pharmaceutics, 2022-07, Vol.14 (8), p.1526
issn 1999-4923
1999-4923
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OpenAccess)
subjects Analysis
Biocompatibility
cancer
Cancer therapies
Care and treatment
Chemotherapy
controlled heat in vivo
Diagnosis
Ferric oxide
Fever
Health aspects
Heat
Hyperthermia
Magnetic fields
magnetic hyperthermia
Nanomaterials
Nanoparticles
Optics
Pancreatic cancer
Patient outcomes
Properties
Temperature
Thermotherapy
Tumors
title Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20Control%20of%20In%20Vivo%20Magnetic%20Hyperthermia%20Using%20Iron%20Oxide%20Nanoparticles%20with%20Different%20Coatings%20and%20Degree%20of%20Aggregation&rft.jtitle=Pharmaceutics&rft.au=Luengo,%20Yurena&rft.date=2022-07-22&rft.volume=14&rft.issue=8&rft.spage=1526&rft.pages=1526-&rft.issn=1999-4923&rft.eissn=1999-4923&rft_id=info:doi/10.3390/pharmaceutics14081526&rft_dat=%3Cgale_doaj_%3EA724768623%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706269936&rft_id=info:pmid/35893782&rft_galeid=A724768623&rfr_iscdi=true