Loading…
Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation
The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target...
Saved in:
Published in: | Pharmaceutics 2022-07, Vol.14 (8), p.1526 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1526 |
container_title | Pharmaceutics |
container_volume | 14 |
creator | Luengo, Yurena Díaz-Riascos, Zamira V García-Soriano, David Teran, Francisco J Artés-Ibáñez, Emilio J Ibarrola, Oihane Somoza, Álvaro Miranda, Rodolfo Schwartz, Simó Abasolo, Ibane Salas, Gorka |
description | The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies. |
doi_str_mv | 10.3390/pharmaceutics14081526 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724768623</galeid><doaj_id>oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00</doaj_id><sourcerecordid>A724768623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</originalsourceid><addsrcrecordid>eNptUsFuEzEQXSEQrUI_AckSFy4pu2t7174gRSmlkQq9UK6W1x5vHO3awd4UeuHbmZAINaj2waOZN-_5jaYo3lblJaWy_LBd6zRqA7vJm1yxUlS8bl4U55WUcs5kTV8-ic-Ki5w3JR5KK0Hl6-KMciFpK-rz4ve1D0CWMUwpDiQ6sgrku3-I5IvuAyA9uXncQprWkEavyX32oSerFAO5--UtkK86xK1OCBwgk59-WpMr7xwkCBPS6gnxmehgyRX0CWAvsegx6rEUw5vildNDhovjOyvurz99W97Mb-8-r5aL27nhTE7zTjAped2azlItKTWcgqs0QMWEZqxttGUOBOPcWktrw7oWOl1S3jnXli3QWbE68NqoN2qb_KjTo4raq7-JmHp1NKE4SN4YaUCiqq1Zx0TDOl1JKhgADnFWfDxwbXfdCNag06SHE9LTSvBr1ccHhR-vWFMjwfsjQYo_dpAnNfpsYBh0gLjLqm7Qq-CtaBD67j_oJu5SwFGpui0bREr6BNVrNOCDi6hr9qRq0dY4HoGqiLp8BoXXwuhNDOA85k8a-KHBpJhzAvfPY1Wq_R6qZ_eQ_gFfXtN1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706269936</pqid></control><display><type>article</type><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OpenAccess)</source><creator>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</creator><creatorcontrib>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</creatorcontrib><description>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</description><identifier>ISSN: 1999-4923</identifier><identifier>EISSN: 1999-4923</identifier><identifier>DOI: 10.3390/pharmaceutics14081526</identifier><identifier>PMID: 35893782</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Biocompatibility ; cancer ; Cancer therapies ; Care and treatment ; Chemotherapy ; controlled heat in vivo ; Diagnosis ; Ferric oxide ; Fever ; Health aspects ; Heat ; Hyperthermia ; Magnetic fields ; magnetic hyperthermia ; Nanomaterials ; Nanoparticles ; Optics ; Pancreatic cancer ; Patient outcomes ; Properties ; Temperature ; Thermotherapy ; Tumors</subject><ispartof>Pharmaceutics, 2022-07, Vol.14 (8), p.1526</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</citedby><cites>FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</cites><orcidid>0000-0002-9089-6925 ; 0000-0001-9873-435X ; 0000-0002-1196-8813 ; 0000-0001-8297-7971 ; 0000-0002-2466-6208 ; 0000-0001-5970-6276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706269936/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706269936?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Luengo, Yurena</creatorcontrib><creatorcontrib>Díaz-Riascos, Zamira V</creatorcontrib><creatorcontrib>García-Soriano, David</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Artés-Ibáñez, Emilio J</creatorcontrib><creatorcontrib>Ibarrola, Oihane</creatorcontrib><creatorcontrib>Somoza, Álvaro</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Schwartz, Simó</creatorcontrib><creatorcontrib>Abasolo, Ibane</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><title>Pharmaceutics</title><description>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Chemotherapy</subject><subject>controlled heat in vivo</subject><subject>Diagnosis</subject><subject>Ferric oxide</subject><subject>Fever</subject><subject>Health aspects</subject><subject>Heat</subject><subject>Hyperthermia</subject><subject>Magnetic fields</subject><subject>magnetic hyperthermia</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optics</subject><subject>Pancreatic cancer</subject><subject>Patient outcomes</subject><subject>Properties</subject><subject>Temperature</subject><subject>Thermotherapy</subject><subject>Tumors</subject><issn>1999-4923</issn><issn>1999-4923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFuEzEQXSEQrUI_AckSFy4pu2t7174gRSmlkQq9UK6W1x5vHO3awd4UeuHbmZAINaj2waOZN-_5jaYo3lblJaWy_LBd6zRqA7vJm1yxUlS8bl4U55WUcs5kTV8-ic-Ki5w3JR5KK0Hl6-KMciFpK-rz4ve1D0CWMUwpDiQ6sgrku3-I5IvuAyA9uXncQprWkEavyX32oSerFAO5--UtkK86xK1OCBwgk59-WpMr7xwkCBPS6gnxmehgyRX0CWAvsegx6rEUw5vildNDhovjOyvurz99W97Mb-8-r5aL27nhTE7zTjAped2azlItKTWcgqs0QMWEZqxttGUOBOPcWktrw7oWOl1S3jnXli3QWbE68NqoN2qb_KjTo4raq7-JmHp1NKE4SN4YaUCiqq1Zx0TDOl1JKhgADnFWfDxwbXfdCNag06SHE9LTSvBr1ccHhR-vWFMjwfsjQYo_dpAnNfpsYBh0gLjLqm7Qq-CtaBD67j_oJu5SwFGpui0bREr6BNVrNOCDi6hr9qRq0dY4HoGqiLp8BoXXwuhNDOA85k8a-KHBpJhzAvfPY1Wq_R6qZ_eQ_gFfXtN1</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Luengo, Yurena</creator><creator>Díaz-Riascos, Zamira V</creator><creator>García-Soriano, David</creator><creator>Teran, Francisco J</creator><creator>Artés-Ibáñez, Emilio J</creator><creator>Ibarrola, Oihane</creator><creator>Somoza, Álvaro</creator><creator>Miranda, Rodolfo</creator><creator>Schwartz, Simó</creator><creator>Abasolo, Ibane</creator><creator>Salas, Gorka</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9089-6925</orcidid><orcidid>https://orcid.org/0000-0001-9873-435X</orcidid><orcidid>https://orcid.org/0000-0002-1196-8813</orcidid><orcidid>https://orcid.org/0000-0001-8297-7971</orcidid><orcidid>https://orcid.org/0000-0002-2466-6208</orcidid><orcidid>https://orcid.org/0000-0001-5970-6276</orcidid></search><sort><creationdate>20220722</creationdate><title>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</title><author>Luengo, Yurena ; Díaz-Riascos, Zamira V ; García-Soriano, David ; Teran, Francisco J ; Artés-Ibáñez, Emilio J ; Ibarrola, Oihane ; Somoza, Álvaro ; Miranda, Rodolfo ; Schwartz, Simó ; Abasolo, Ibane ; Salas, Gorka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Chemotherapy</topic><topic>controlled heat in vivo</topic><topic>Diagnosis</topic><topic>Ferric oxide</topic><topic>Fever</topic><topic>Health aspects</topic><topic>Heat</topic><topic>Hyperthermia</topic><topic>Magnetic fields</topic><topic>magnetic hyperthermia</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optics</topic><topic>Pancreatic cancer</topic><topic>Patient outcomes</topic><topic>Properties</topic><topic>Temperature</topic><topic>Thermotherapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luengo, Yurena</creatorcontrib><creatorcontrib>Díaz-Riascos, Zamira V</creatorcontrib><creatorcontrib>García-Soriano, David</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Artés-Ibáñez, Emilio J</creatorcontrib><creatorcontrib>Ibarrola, Oihane</creatorcontrib><creatorcontrib>Somoza, Álvaro</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Schwartz, Simó</creatorcontrib><creatorcontrib>Abasolo, Ibane</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luengo, Yurena</au><au>Díaz-Riascos, Zamira V</au><au>García-Soriano, David</au><au>Teran, Francisco J</au><au>Artés-Ibáñez, Emilio J</au><au>Ibarrola, Oihane</au><au>Somoza, Álvaro</au><au>Miranda, Rodolfo</au><au>Schwartz, Simó</au><au>Abasolo, Ibane</au><au>Salas, Gorka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation</atitle><jtitle>Pharmaceutics</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1526</spage><pages>1526-</pages><issn>1999-4923</issn><eissn>1999-4923</eissn><abstract>The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893782</pmid><doi>10.3390/pharmaceutics14081526</doi><orcidid>https://orcid.org/0000-0002-9089-6925</orcidid><orcidid>https://orcid.org/0000-0001-9873-435X</orcidid><orcidid>https://orcid.org/0000-0002-1196-8813</orcidid><orcidid>https://orcid.org/0000-0001-8297-7971</orcidid><orcidid>https://orcid.org/0000-0002-2466-6208</orcidid><orcidid>https://orcid.org/0000-0001-5970-6276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4923 |
ispartof | Pharmaceutics, 2022-07, Vol.14 (8), p.1526 |
issn | 1999-4923 1999-4923 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5e956c9ce9b84d24b4864ba19384ee00 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OpenAccess) |
subjects | Analysis Biocompatibility cancer Cancer therapies Care and treatment Chemotherapy controlled heat in vivo Diagnosis Ferric oxide Fever Health aspects Heat Hyperthermia Magnetic fields magnetic hyperthermia Nanomaterials Nanoparticles Optics Pancreatic cancer Patient outcomes Properties Temperature Thermotherapy Tumors |
title | Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20Control%20of%20In%20Vivo%20Magnetic%20Hyperthermia%20Using%20Iron%20Oxide%20Nanoparticles%20with%20Different%20Coatings%20and%20Degree%20of%20Aggregation&rft.jtitle=Pharmaceutics&rft.au=Luengo,%20Yurena&rft.date=2022-07-22&rft.volume=14&rft.issue=8&rft.spage=1526&rft.pages=1526-&rft.issn=1999-4923&rft.eissn=1999-4923&rft_id=info:doi/10.3390/pharmaceutics14081526&rft_dat=%3Cgale_doaj_%3EA724768623%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-b8499527cbd3a933c53ef1aee148a4476ad4fe8455ddd32c4b7eba035bff707e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706269936&rft_id=info:pmid/35893782&rft_galeid=A724768623&rfr_iscdi=true |