Loading…

Performances of the Synergy of Silica Fume and Waste Glass Powder in Ternary Blended Concrete

The quest to enhance public health and the need for a reduction in the environmental solid wastes have prompted this study. Despite abundant studies on silica fume (SF or S) and waste glass powder (WGP or G), there is a need to understand the interaction of WGP with SF in the production of ordinary...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-07, Vol.12 (13), p.6637
Main Authors: Yusuf, Moruf Olalekan, Al-Sodani, Khaled A. Alawi, AlAteah, Ali H., Al-Tholaia, Mohammed M. H., Adewumi, Adeshina A., Bakare, Azeez Oladipupo, Usman, Abdullahi Kilaco, Momohjimoh, Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quest to enhance public health and the need for a reduction in the environmental solid wastes have prompted this study. Despite abundant studies on silica fume (SF or S) and waste glass powder (WGP or G), there is a need to understand the interaction of WGP with SF in the production of ordinary Portland cement (OPC or C)-based concrete using the water/binder ratio of 0.42. The investigated concrete comprised 90 wt.% of OPC and 10 wt.% of WGP+SF. The samples were denoted as C90GxS10−x such that x varied from 0–10 wt.% at the interval of 2.5. The findings revealed that an increase in the WGP/SF ratio enhanced the absorption of silica/glass blended concrete due to size incompatibility and proliferations of interfacial transition zones between the glass particle, silica fume and cement matrix. The density of fresh OPC concrete was higher than that of glass/silica blended concrete due to the difference in their relative densities. Incorporating WGP and SF in synergy enhanced silicate reorganization and led to a more amorphous binder and a reduction in hydroxyl-based compounds such as portlandite but caused microstructural heterogeneity in the morphology of the binder as obtained from XRD, FTIR and SEM/EDS results. The 28-day compressive strength of 46 MPa is achievable if the WGP and SF are kept within 2.5–5 wt.% and 5–7.5 wt.%, respectively. The study will foster the production of economic, environmental, and cost-efficient concrete.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12136637